Chapter 12: Deflection of Beams and Shafts

Chapter Objectives

✓ Determine the deflection and slope at specific points on beams and shafts, using various analytical methods including:
  ➢ The integration method
  ➢ The method of superposition
Deflection of beams

- **Goal**: Determine the deflection and slope at specified points of beams and shafts

- **Solve statically indeterminate beams**: where the number of reactions at the supports exceeds the number of equilibrium equations available.

- **Maximum deflection of the beam**: Design specifications of a beam will generally include a maximum allowable value for its deflection.

**Moment-Curvature equation:**

\[
\frac{d^2y}{dx^2} = \frac{M(x)}{EI}
\]

Governing equation of the elastic curve
- Elastic curve equation for constant $E$ and $I$: $EI y'' = M(x)$

- Differentiating both sides gives: $EI y''' = \frac{dM(x)}{dx} = V(x)$

- Differentiating again: $EI y'''' = \frac{dV(x)}{dx} = -w(x)$

- In summary, we have:
  
  $y(x)$: deflection
  $y'(x)$: slope
  $EI y''(x)$: bending moment
  $EI y'''(x)$: shear force
  $EI y''''(x)$: distributed load

- **Sign conventions:**
  
  Positive internal moment concave upwards
  Negative internal moment concave downwards

- **Boundary conditions**
  
  Roller or Pin
  Fixed End Free End
Superposition principle

Many common beam deflection solutions have been worked out – see your formula sheet!

If we'd like to find the solution for a loading situation that is not given in the table, we can use superposition to get the answer: represent the load of interest as a combination of two or more loads that are given in the table, and the resulting deflection curve for this loading is simply the sum of each curve from each loading treated separately.
Obtain the deflection at point A using the superposition method and compare with the result obtained using the integration method.

\[ \gamma(x) = \frac{Mx^2}{2EI} - \frac{P}{6EI} (x^3 - 3x^2) \]

\[ \theta(x) = \frac{-Mx^3}{3EI} - \frac{P}{6EI} (5x^2 - 6lx) \]

\[ \gamma(0) = \gamma(L) = \ldots \]

\[ \theta(0) = \gamma'(L) = \ldots \]

---

<table>
<thead>
<tr>
<th>Region</th>
<th>Max. Deflection ( \delta )</th>
<th>Slope at End ( \theta )</th>
<th>Elastic Curve ( \psi(x) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>( \frac{PL^3}{48EI} )</td>
<td>(-\frac{PL^3}{96EI})</td>
<td>( \frac{3PL^3}{12EI} )</td>
</tr>
<tr>
<td>2</td>
<td>( \frac{ML^2}{2EI} )</td>
<td>(-\frac{ML^2}{8EI})</td>
<td>( \frac{ML^2}{8EI} )</td>
</tr>
</tbody>
</table>

\[ \delta_A = \frac{PL^3}{24EI} + \frac{PL^2}{8EI} \cdot \frac{1}{2} = \frac{1}{2} \left( \frac{PL^3}{EI} \right) = \frac{5PL^3}{48EI} \]

\[ \delta_A = (\delta_A)_1 + (\delta_A)_2 = \frac{5PL^3}{48EI} - \frac{ML^2}{2EI} \]
Practical application: measure stiffness of brittle material

It can be difficult to perform a tension test on brittle materials – can easily crack at grips and can only withstand small amount of strain.

Instead, a 3 point bending test is often used.

\[
\delta = \text{midpoint deflection}
\]

Find an expression for the stiffness \( E \) of the material, given the geometry, applied load \( F \), and deflection \( \delta \) at the midpoint:

\[
E = \frac{s}{\delta} = \frac{FL^3}{48EI}
\]

Assuming failure occurs at a force \( F_f \), find an expression for the stress at failure \( \sigma_f \):

\[
\sigma_f = \frac{M_c}{I} = \frac{E_f}{4} R
\]

If rectangle, \( I = \frac{bd^3}{12} \), \( c = \frac{d}{2} \)

If circular, \( I = \frac{\pi R^4}{4} \), \( c = R \)

\[
\gamma(x) = \frac{F}{2L}
\]

\[
M(x) = \frac{FL}{4}
\]

\[
\sigma_f = \frac{3FL}{2bd^2} \]
Find the deflection at point B at the end of the cantilever beam.

### Beam Deflection

<table>
<thead>
<tr>
<th>Diagram</th>
<th>Max. Deflection</th>
<th>Span at End</th>
<th>Elastic Curve</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="Diagram" /></td>
<td><img src="image" alt="Equation" /></td>
<td><img src="image" alt="Equation" /></td>
<td><img src="image" alt="Equation" /></td>
</tr>
</tbody>
</table>

Full soln is in the table.

Case 1: Max. deflection is \( (S_B) = \frac{-WL^4}{8EI} \) at \( L/2 \).

Case 2: \( \delta_C = \frac{-W(L/2)^4}{8EI} = \frac{-WL^4}{128EI} \), \( \Theta_C = \frac{-W(L/2)^3}{6EI} = \frac{-WL^3}{48EI} \).

\[ (S_B)_2 = \frac{-WL^4}{128EI} - \frac{WL^3}{48EI} \frac{L}{2} = \frac{-WL^4}{EI} \left( \frac{1}{128} + \frac{1}{96} \right) \]

\[ \delta_B = (S_B)_1 - (S_B)_2 = \frac{-WL^4}{EI} \left( \frac{1}{8} - \frac{1}{128} - \frac{1}{96} \right) \]
Ch. 12 - Beam Deflections Page 9

Indeterminate problems

More reactions than equilibrium equations. Must apply geometric compatibility.

4 reactions; 3 eqn. 3 unknowns (RF = 0 EF = 0 EM ≠ 0)

Geometric compatibility

γ(0) = 0
γ(L) = 0

γ'(0) = 0
γ'(L) = 0

γ(0) = 0
γ(L) = 0

γ'(0) = 0
γ'(L) = 0

5 unknowns
4 reactions (RF, EF, EM, MA, MB)
2 int. constants

γ(0) = 0, EM = 0

Find γ(c) in a table, set γ(0) = 0, C.C.'s to set geometric compatibility and solve for the coefficients in the γ(c) expression.

Obtain the reaction at the support B using

- Integration method
- Superposition method

γ''(x) = \frac{M(x)}{EI} \quad \text{with B.C.'s} \quad γ'(0) = 0 \quad γ'(L) = 0

Applies γ'(0) = 0 ⇒ C1 = 0

Applies γ(L) = 0 (due to roller at B)

γ(L) = 0 = \frac{1}{EI} \left( \frac{1}{6} A_y x^3 - \frac{1}{2} W x^2 - M_A x^2 \right) + \chi_2

Multiply by \frac{2EI}{L^2} to get:

A_y L - UL^2 - 2M_A = 0

eqn. (5)
\[
\begin{align*}
A_y + B_y &= wL \\
B_yL + MA &= \frac{wL^2}{2} \\
4A_yL - 12MA &= wL^2
\end{align*}
\]

System of 3 eqns. in 3 unknowns

\[
\begin{bmatrix}
1 & 1 & 0 \\
0 & 1 & 1 \\
4L & 0 & -12
\end{bmatrix}
\begin{bmatrix}
A_y \\
B_y \\
MA
\end{bmatrix}
= 
\begin{bmatrix}
\frac{wL}{2} \\
\frac{wL^2}{2} \\
\frac{wL^2}{2}
\end{bmatrix}
\]

\[
\begin{bmatrix}
A_y \\
B_y \\
MA
\end{bmatrix}
= 
\begin{bmatrix}
1 & 1 & 0 \\
0 & 1 & 1 \\
4L & 0 & -12
\end{bmatrix}^{-1}
\begin{bmatrix}
\frac{wL}{2} \\
\frac{wL^2}{2} \\
\frac{wL^2}{2}
\end{bmatrix}
= 
\begin{bmatrix}
\frac{5}{8}wL \\
\frac{3}{8}wL \\
\frac{1}{8}wL^2
\end{bmatrix}
\]

Superposition Method

From the table:

\[
Y_{max} = y_8 = \frac{-yL^2}{2EI}
\]

\[
Y_{max} = y_8 = \frac{-wL^4}{4EI}
\]

Geometric Compatibility

\[
y_8 = 0
\]

Set \( P \rightarrow -B_y \)

b.c. acts down in the table, but \( B_y \) acts up in our F.B.D.

\[
y_8 = (y_8)_1 + (y_8)_2 = 0
\]

\[
\frac{24EI}{L^3} \left( \frac{(-B_y) L^3}{3EI} + \frac{-wL^4}{8EI} \right) = 0
\]

\[
4B_y - 3wL = 0
\]

\[
B_y = \frac{3wL}{4}
\]

From eqn. (1):

\[
A_y + \left( \frac{3wL}{4} \right) - wL = 0
\]

\[
A_y = \frac{5wL}{4}
\]

From eqn. (2):

\[
\left( \frac{3wL}{4} \right) L + MA - \frac{wL^2}{2} = 0
\]

\[
MA = \frac{4wL^2}{6} - \frac{3wL^2}{8} = \frac{wL^2}{8}
\]
Determine the deflection at B

The beam is supported by a pin at A, a roller at B, and a deformable post at C. The post has length $L/4$, cross-sectional area $A$, modulus of elasticity $E$, and thermal expansion coefficient $\alpha$. The beam has constant moment of inertia $I = A L^2$ and modulus of elasticity $E$ (the same as the post).

(a) Determine the internal force in the post when the distributed load $w$ is applied AND the post experiences an increase in temperature $\Delta T$, where $\Delta T > 0$. 

\[ y_{\text{max}} = \frac{5wxL}{384EI} \]

\[ y_{\text{max}} = \frac{PL^3}{48EI} \]
Before the uniform distributed load is applied on the beam, there is a small gap of 0.2 mm between the beam and the post at B. Determine the support reactions at A, B, and C. The post at B has a diameter of 40 mm, and the moment of inertia of the beam is $I = 875 \times 10^6$ mm$^4$. The post and the beam are made of material having a modulus of elasticity of $E = 200$ GPa.

Find the reaction force at point C using superposition methods.

Geometric compatibility:

Match deflections at B:

\[ (S_B)_1 = (S_B)_2 \]

\[ (S_B)_1 = \frac{-PL^3}{3EI} + \frac{F_B (L/2)^3}{3EI} = \frac{(F_B - P) L^3}{24EI} \]

\[ (S_B)_2 = \frac{-F_B L^3}{48EI} \]

\[ \frac{(F_B - P)L^3}{24EI} = \frac{-F_B L^3}{48EI} \]

\[ 2(F_B - P) = -F_B \]

\[ 2F_B - 2P = -F_B \]

\[ F_B = \frac{2}{3} P \]
\( (\ell M)_A = 0 \Rightarrow -\frac{2}{3}p \cdot \Delta_y + C_y \cdot \chi = 0 \)

\[-\frac{p}{3} + C_y = 0 \]

\[C_y = \frac{p}{3} \]