TAM 212. Midterm 2. Nov 7, 2013. Discussion 'Quiz'

• There are 20	questions,	each worth	5 points.	(Quiz	has just 5	questions.)
----------------	------------	------------	-----------	-------	------------	-------------

- You must not communicate with other students during this test.
- No electronic devices allowed.
- This is a 2 hour exam.
- Do not turn this page until instructed to do so.
- There are several different versions of this exam.

1. Fill in your information:	
Full Name:	
UIN (Student Number):	
NetID:	

2. Fill in the following answers on the Scantron form:

- 91. A
- 92. A
- 93. A
- 94. A
- 95. D
- 96. C

1. (1 point) A rigid body is moving in 2D as shown below with angular velocity $\vec{\omega} = \omega \hat{k}$. A pin at point Q constrains that point to move in a vertical slot.

Point P on the body has:

$$\vec{r}_{PQ} = -\hat{\imath} - 2\hat{\jmath} \text{ m}$$

 $\vec{v}_P = \hat{\imath} + \hat{\jmath} \text{ m/s}.$

What is ω ?

- (A) \star -1 rad/s $\leq \omega < 0$ rad/s
- (B) $0 \text{ rad/s} < \omega < 1 \text{ rad/s}$
- (C) $\omega = 0 \text{ rad/s}$
- (D) 1 rad/s $\leq \omega$
- (E) $\omega < -1 \text{ rad/s}$

Solution. Taking $\vec{v}_Q = v_Q \,\hat{\jmath}$ with unknown speed v_Q , we have:

$$\begin{aligned} \vec{v}_Q &= \vec{v}_P + \vec{\omega} \times \vec{r}_{PQ} \\ v_Q \, \hat{\jmath} &= \hat{\imath} + \hat{\jmath} + \omega \hat{k} \times (-\hat{\imath} - 2\hat{\jmath}) \\ &= \hat{\imath} + \hat{\jmath} + 2\omega \, \hat{\imath} - \omega \, \hat{\jmath} \\ &= (1 + 2\omega) \, \hat{\imath} + (1 - \omega) \, \hat{\jmath} \end{aligned}$$

Equating \hat{i} components gives $0 = 1 + 2\omega$, so $\omega = -0.5$ rad/s.

Alternatively, a fast solution is to observe that the rotation is caused by the normal velocity component $v_{Pn} = 1$ m/s acting at a distance $r_{PQt} = 2$ m, so the angular velocity is 1/2 rad/s clockwise.

2. (1 point) Two rods are connected with pin joints at O, P, and Q as shown. Rod OP has angular velocity $\vec{\omega}_1 = -\hat{k}$ rad/s and rod PQ has angular velocity $\vec{\omega}_2 = \omega_2 \hat{k}$.

The velocity \vec{v}_Q of point Q is directly upwards and the positions of the rods are:

$$\vec{r}_{OP} = 3\hat{\imath} + 4\hat{\jmath} \text{ m}$$

 $\vec{r}_{PO} = -4\hat{\imath} - \hat{\jmath} \text{ m}$

What is the speed v_Q of point Q?

- (A) $9 \text{ m/s} \le v_Q < 12 \text{ m/s}$
- (B) $0 \text{ m/s} \le v_Q < 3 \text{ m/s}$
- (C) 6 m/s $\leq v_Q < 9$ m/s
- (D) $3 \text{ m/s} \le v_Q < 6 \text{ m/s}$
- (E) \star 12 m/s $\leq v_Q$

Solution. Starting from $\vec{v}_O = 0$ we have:

$$\begin{split} \vec{v}_P &= \vec{v}_O + \vec{\omega}_1 \times \vec{r}_{OP} \\ &= 4\hat{\imath} - 3\hat{\jmath} \\ \vec{v}_Q &= \vec{v}_P + \vec{\omega}_2 \times \vec{r}_{PQ} \\ &= (4 + \omega_2)\,\hat{\imath} + (-3 - 4\omega_2)\,\hat{\jmath} \text{ m/s}. \end{split}$$

Zero horizontal component implies $4 + \omega_2 = 0$, so $\omega_2 = -4$ rad/s. Then $\vec{v}_Q = 13\hat{\jmath}$ m/s, giving $v_Q = 13$ m/s.

3. (1 point) A circular rigid body with radius r=2 m rotates about the fixed center O as shown. A rigid rod connects pins P and Q, and point P is constrained to only move horizontally. Point P has velocity $\vec{v}_P = -4\hat{\imath}$ m/s and acceleration $\vec{a}_P = 0$. The angular velocity and angular acceleration of the circular body are $\vec{\omega}_1 = \omega_1 \hat{k}$ and $\vec{\alpha}_1 = \alpha_1 \hat{k}$, while those of the rod are $\vec{\omega}_2 = \omega_2 \hat{k}$ and $\vec{\alpha}_2 = \alpha_2 \hat{k}$.

The position vectors are:

$$\begin{split} \vec{r}_{OQ} &= -2\hat{\jmath} \text{ m} \\ \vec{r}_{PO} &= -6\hat{\imath} - 2\hat{\jmath} \text{ m}. \end{split}$$

What is α_1 ?

- (A) $1 \text{ rad/s}^2 \le \alpha_1$
- (B) $-1 \text{ rad/s}^2 \le \alpha_1 < 0 \text{ rad/s}^2$
- (C) $0 \text{ rad/s}^2 < \alpha_1 < 1 \text{ rad/s}^2$
- (D) $\alpha_1 = 0 \text{ rad/s}^2$
- (E) $\star \alpha_1 < -1 \text{ rad/s}^2$

Solution. We first use the fact that $\vec{v}_Q = -v_Q \hat{\imath}$ to find:

$$\vec{v}_{Q} = \vec{v}_{P} + \vec{\omega}_{2} \times \vec{r}_{PQ}$$
$$-v_{Q}\hat{\imath} = -4\hat{\imath} + \omega_{2}\hat{k} \times (-6\hat{\imath} - 2\hat{\jmath})$$
$$(4 - v_{Q})\hat{\imath} = 2\omega_{2}\,\hat{\imath} - 6\omega_{2}\,\hat{\jmath}.$$

Comparing \hat{j} components shows that $\omega_2=0$ and $v_Q=4$ m/s, so $\omega_1=-4/2=-2$ rad/s. The fact that $\vec{v}_P=\vec{v}_Q$ could have also been realized from the fact that \vec{v}_P and \vec{v}_Q are parallel and offset, so there is no instantaneous center and thus no rotation.

Now we have:

$$\begin{split} \vec{a}_Q &= \vec{a}_Q \\ \vec{a}_O + \vec{\alpha}_1 \times \vec{r}_{OQ} + \vec{\omega}_1 \times (\vec{\omega}_1 \times \vec{r}_{OQ}) &= \vec{a}_P + \vec{\alpha}_2 \times \vec{r}_{PQ} + \vec{\omega}_2 \times (\vec{\omega}_2 \times \vec{r}_{PQ}) \\ 0 + \alpha_1 \hat{k} \times (-2\hat{j}) - \omega_1^2 (-2\hat{j}) &= 0 + \alpha_2 \hat{k} \times (-6\hat{i} - 2\hat{j}) + 0 \\ 2\alpha_1 \hat{i} + 2\omega_1^2 \hat{j} &= 2\alpha_2 \hat{i} - 6\alpha_2 \hat{j}. \end{split}$$

Equating components shows that $\alpha_1 = \alpha_2 = -\omega_1^2/3 = -4/3 \approx -1.33 \text{ rad/s}^2$.

4. (1 point) Five circular rigid bodies are rolling without slipping as shown, with the accelerations of points P and Q on the bodies as drawn.

Which body does *not* have physically possible accelerations for points P and Q?

- (A) \mathcal{B}_5
- (B) \mathcal{B}_2
- (C) \mathcal{B}_3
- (D) $\star \mathcal{B}_1$
- (E) \mathcal{B}_4

Solution. The acceleration of a rolling body is determined by the angular velocity $\vec{\omega} = \omega \hat{k}$ and the angular acceleration $\vec{\alpha} = \alpha \hat{k}$. Taking C to be the center and P to be the contact point, any point Q on the body has acceleration:

$$\begin{split} \vec{a}_Q &= \vec{a}_C + \vec{\alpha} \times \vec{r}_{CQ} + \vec{\omega} \times (\vec{\omega} \times \vec{r}_{CQ}) \\ &= \vec{\alpha} \times \vec{r}_{PC} + \vec{\alpha} \times \vec{r}_{CQ} - \omega^2 \vec{r}_{CQ} \\ &= \vec{\alpha} \times \vec{r}_{PQ} - \omega^2 \vec{r}_{CQ} \\ &= r\alpha \hat{r}_{PQ}^{\perp} - r\omega^2 \hat{r}_{CQ}. \end{split}$$

Thus α causes rotational acceleration about the contact point, while ω causes centripetal acceleration towards the center, as shown below.

Combining these, we see that:

- Body \mathcal{B}_1 is not possible.
- Body \mathcal{B}_2 has $\omega = 0$ and $\alpha < 0$, and it is possible.
- Body \mathcal{B}_3 has $\omega \neq 0$ and $\alpha < 0$ so that $2r|\alpha| = r\omega^2$, and it is possible.
- Body \mathcal{B}_4 has $\omega \neq 0$ and $\alpha > 0$ so that $r\alpha = r\omega^2$, and it is possible.
- Body \mathcal{B}_5 has $\omega \neq 0$ and $\alpha = 0$, and it is possible.

5. (1 point) Five bodies moving in 2D are shown below with the velocities of points P and Q on the bodies as drawn.

Which body has physically possible velocities for point P and Q?

- (A) \mathcal{B}_5
- (B) $\star \mathcal{B}_3$
- (C) \mathcal{B}_2
- (D) \mathcal{B}_4
- (E) \mathcal{B}_1

Solution.

- Body \mathcal{B}_1 has P rotating clockwise and Q rotating counterclockwise about M, so it is impossible.
- Body \mathcal{B}_2 has P closer to M than Q, but v_P is larger than v_Q , so it is impossible.
- Body \mathcal{B}_3 is possible.
- Body \mathcal{B}_4 has M at Q, but $\vec{v}_Q \neq 0$, so it is impossible.
- Body \mathcal{B}_5 does not have an instantaneous center, and the velocities of P and Q are not equal, so it is impossible.

