TAM 212. Midterm 2. Spring 2015 Discussion 'Quiz'

•	There are 20	questions,	each v	worth 5	points.	(Quiz	has just 5	questions.))
---	--------------	------------	--------	---------	---------	-------	------------	-------------	---

- You must not communicate with other students during this test.
- No electronic devices allowed.
- This is a 2 hour exam.
- Do not turn this page until instructed to do so.
- There are several different versions of this exam.

1.	Fill in your information:
	Full Name:
	UIN (Student Number):
	NetID:

2. Fill in the following answers on the Scantron form:

- 91. A
- 92. A
- 93. A
- 94. A
- 95. D
- 96. C

1. (1 point) A rigid body is moving in 2D as shown below with angular velocity $\vec{\omega} = \omega \hat{k}$. A pin at point Q constrains that point to move in a vertical slot.

Point P on the body has:

$$\vec{r}_{PQ} = -\hat{\imath} - 2\hat{\jmath} \text{ m}$$

$$\vec{v}_P = \hat{\imath} + \hat{\jmath} \text{ m/s}.$$

What is ω ?

- (A) $-1 \text{ rad/s} \le \omega < 0 \text{ rad/s}$
- (B) $0 \text{ rad/s} < \omega < 1 \text{ rad/s}$
- (C) $\omega = 0 \text{ rad/s}$
- (D) $1 \text{ rad/s} \le \omega$
- (E) $\omega < -1 \text{ rad/s}$

2. (1 point) Two rods are connected with pin joints at O, P, and Q as shown. Rod OP has angular velocity $\vec{\omega}_1 = -\hat{k} \operatorname{rad/s}$ and rod PQ has angular velocity $\vec{\omega}_2 = \omega_2 \hat{k}$.

The velocity \vec{v}_Q of point Q is directly upwards and the positions of the rods are:

$$\vec{r}_{OP} = 3\hat{\imath} + 4\hat{\jmath} \text{ m}$$

$$\vec{r}_{PQ} = -4\hat{\imath} - \hat{\jmath} \text{ m}$$

What is the speed v_Q of point Q?

- (A) $9 \text{ m/s} \le v_Q < 12 \text{ m/s}$
- (B) $0 \text{ m/s} \le v_Q < 3 \text{ m/s}$
- (C) 6 m/s $\leq v_Q < 9$ m/s
- (D) 3 m/s $\leq v_Q < 6$ m/s
- (E) $12 \text{ m/s} \le v_Q$

3. (1 point) A circular rigid body with radius r=2 m rotates about the fixed center O as shown. A rigid rod connects pins P and Q, and point P is constrained to only move horizontally. Point P has velocity $\vec{v}_P = -4\hat{\imath}$ m/s and acceleration $\vec{a}_P = 0$. The angular velocity and angular acceleration of the circular body are $\vec{\omega}_1 = \omega_1 \hat{k}$ and $\vec{\alpha}_1 = \alpha_1 \hat{k}$, while those of the rod are $\vec{\omega}_2 = \omega_2 \hat{k}$ and $\vec{\alpha}_2 = \alpha_2 \hat{k}$.

The position vectors are:

$$\begin{split} \vec{r}_{OQ} &= -2\hat{\jmath} \; \mathrm{m} \\ \vec{r}_{PQ} &= -6\hat{\imath} - 2\hat{\jmath} \; \mathrm{m}. \end{split}$$

What is α_1 ?

- (A) $1 \text{ rad/s}^2 \le \alpha_1$
- (B) $-1 \text{ rad/s}^2 \le \alpha_1 < 0 \text{ rad/s}^2$
- (C) $0 \text{ rad/s}^2 < \alpha_1 < 1 \text{ rad/s}^2$
- (D) $\alpha_1 = 0 \text{ rad/s}^2$
- (E) $\alpha_1 < -1 \text{ rad/s}^2$

4. (1 point) Five circular rigid bodies are rolling without slipping as shown, with the accelerations of points P and Q on the bodies as drawn.

Which body does *not* have physically possible accelerations for points P and Q?

- (A) \mathcal{B}_5
- (B) \mathcal{B}_2
- (C) \mathcal{B}_3
- (D) \mathcal{B}_1
- (E) \mathcal{B}_4

5. (1 point) Five bodies moving in 2D are shown below with the velocities of points P and Q on the bodies as drawn.

Which body has physically possible velocities for point P and Q?

- (A) \mathcal{B}_5
- (B) \mathcal{B}_3
- (C) \mathcal{B}_2
- (D) \mathcal{B}_4
- (E) \mathcal{B}_1