TAM 212. Midterm 1. Mar. 5, 20145. Discussion 'Quiz'

- There are 20 questions, each worth 5 points.
- You must not communicate with other students during this test.
- No electronic devices allowed.
- This is a 2 hour exam.
- Do not turn this page until instructed to do so.
- There are several different versions of this exam.

-1	T7 * 11	•		• •	, •
Ι.	Hill	ın	vour	inform	ation:
			.,		acioii.

Full Name:	
UIN (Student Number):	
NetID:	

2. Circle your discussion section:

	Monday	Tuesday	Wednesday	Thursday
8–9				
9–10		ADC (260 MEB)		ADK (260 MEB)
10–11		ADD (335 MEB)		
11–12		ADE (335 MEB)		ADL (153 MEB)
12-1	ADA (243 MEB)	ADF (335 MEB)	ADJ (335 MEB)	ADN (260 MEB)
1-2				
2-3				
3–4				
4-5			ADO (260 MEB)	
5–6	ADB (260 MEB)	ADH (260 MEB)	ADM (243 MEB)	

3. Fill in the following answers on the Scantron form:

- 91. A
- 92. A
- 93. A
- 94. A
- 95. D
- 96. C

1/1. (1 point) Points P and Q are moving in circular paths around the origin O with angular velocities ω_P and ω_Q .

The two particles are moving with the same speed. Which statement is true?

- A. $|\omega_P| \leq \frac{1}{2} |\omega_Q|$
- B. $\frac{1}{2}|\omega_Q| < |\omega_P| \le |\omega_Q|$
- C. $\bigstar |\omega_Q| < |\omega_P| \le 2|\omega_Q|$
- D. $2|\omega_Q| < |\omega_P|$

Solution. If the particles both have speed v then we can observe from the diagram that ω_P is a little bit higher than ω_Q .

More precisely, taking absolute values to ignore the direction, we have:

$$|\omega_P| = \frac{v}{r_P}$$

$$|\omega_Q| = \frac{v}{r_Q}$$

$$|\omega_P| = \frac{r_Q}{r_P} |\omega_Q|.$$

From the diagram, $\frac{r_Q}{r_P} \approx 1.25$, so ω_P is larger than $|\omega_Q|$, but smaller than $2|\omega_Q|$.

2/1. (1 point) A particle moves so that its position vector in the Cartesian basis is given by

$$\vec{r} = \cos t \,\hat{\imath} + \sin t \,\hat{\jmath} + t \,\hat{k} \, \mathrm{m}.$$

Using cylindrical coordinates, what is the angular component of velocity v_{θ} at $t = \pi/4$ s?

- A. $v_{\theta} < -1 \text{ m/s}$
- B. $-1 \text{ m/s} \le v_{\theta} < 0 \text{ m/s}$
- C. $v_{\theta} = 0 \text{ m/s}$
- D. $0 \text{ m/s} \le v_{\theta} < 1 \text{ m/s}$
- E. \bigstar 1 m/s $\leq v_{\theta}$

Solution. If we realize that the \hat{i}, \hat{j} motion is uniform circular motion with constant R = 1 m and $\dot{\theta} = 1$ rad/s, then we known that $v_{\theta} = R\dot{\theta} = 1$ m/s.

 $\dot{\theta}=1$ rad/s, then we known that $v_{\theta}=R\dot{\theta}=1$ m/s. Alternatively, $\vec{r}=\frac{1}{\sqrt{2}}\hat{\imath}+\frac{1}{\sqrt{2}}\hat{\jmath}+\frac{\pi}{4}\hat{k}$, so $\hat{e}_{r}=\frac{1}{\sqrt{2}}\hat{\imath}+\frac{1}{\sqrt{2}}\hat{\jmath}$ and $\hat{e}_{\theta}=-\frac{1}{\sqrt{2}}\hat{\imath}+\frac{1}{\sqrt{2}}\hat{\jmath}$. Then:

$$\vec{r}(t) = \cos t \,\hat{\imath} + \sin t \,\hat{\jmath} + t \,\hat{k}$$

$$\vec{v}(t) = -\sin t \,\hat{\imath} + \cos t \,\hat{\jmath} + \hat{k}$$

$$\vec{v}(\pi/4) = -\frac{1}{\sqrt{2}} \,\hat{\imath} + \frac{1}{\sqrt{2}} \,\hat{\jmath} + \hat{k}$$

$$v_{\theta} = \vec{v} \cdot \hat{e}_{\theta}$$

$$= \left(-\frac{1}{\sqrt{2}} \,\hat{\imath} + \frac{1}{\sqrt{2}} \,\hat{\jmath} \right) \cdot \left(-\frac{1}{\sqrt{2}} \,\hat{\imath} + \frac{1}{\sqrt{2}} \,\hat{\jmath} + \hat{k} \right)$$

3/1. (1 point) The position vector \vec{r} and velocity \vec{v} for a single particle P are shown below at a particular instant.

Which statement about \dot{r} is true at this instant?

- A. $\star \dot{r} > 0$
- B. $\dot{r} = 0$
- C. $\dot{r} < 0$

Solution. $\vec{v} \cdot \vec{r} > 0$ so \vec{v} has a positive component in the \vec{r} direction, meaning that \vec{r} is getting longer and $\dot{r} > 0$.

4/1. (1 point) A ladder leaning against the wall has a fixed length of $\ell=5$ m. The bottom of the ladder is 3 m from the wall and is moving along the ground away from the wall at a speed of 2 m/s. What is the vertical component of the velocity v_y of the top of the ladder, assuming it remains in contact with the wall?

- A. $\star v_y < -1 \text{ m/s}$
- B. $-1 \text{ m/s} \le v_y < 0 \text{ m/s}$
- C. $v_y = 0 \text{ m/s}$
- D. $0 \text{ m/s} < v_y < 1 \text{ m/s}$
- E. 1 m/s $< v_y$

Solution. Taking x to be the horizontal coordinate of the bottom of the ladder, and y the vertical coordinate of the top of the ladder, we have x = 3 and y = 4 at the instant shown. Then:

$$\ell^{2} = x^{2} + y^{2}$$

$$0 = 2x\dot{x} + 2y\dot{y}$$

$$\dot{y} = -\frac{x}{y}\dot{x}$$

$$v_{y} = -\frac{3}{4}2$$

5/1. (1 point) A point P is moving around a curve and at a given instant has position and velocity \vec{v} as shown.

Which direction is the closest to the direction of the normal basis vector \hat{e}_n at the instant shown?

- A. 🗸
- В. 🦴
- C. <
- D. ★ /

Solution. \hat{e}_n is inwards to the curve.