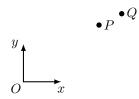
TAM 212. Midterm 1. Mar. 5, 20145. Discussion 'Quiz'

- There are 20 questions, each worth 5 points.
- You must not communicate with other students during this test.
- No electronic devices allowed.
- This is a 2 hour exam.
- Do not turn this page until instructed to do so.
- There are several different versions of this exam.

-1	T7.11	•		• •	ı •
	H'111	ın	vour	inform	เลโเดท
т•	T 111	111	your	11110111	iauioii.

Full Name:	
UIN (Student Number):	
NetID:	


2. Circle your discussion section:

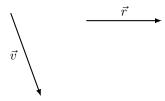
	Monday	Tuesday	Wednesday	Thursday
8–9				
9–10		ADC (260 MEB)		ADK (260 MEB)
10–11		ADD (335 MEB)		
11–12		ADE (335 MEB)		ADL (153 MEB)
12-1	ADA (243 MEB)	ADF (335 MEB)	ADJ (335 MEB)	ADN (260 MEB)
1-2				
2-3				
3–4				
4–5			ADO (260 MEB)	
5–6	ADB (260 MEB)	ADH (260 MEB)	ADM (243 MEB)	

3. Fill in the following answers on the Scantron form:

- 91. A
- 92. A
- 93. A
- 94. A
- 95. D
- 96. C

1/1. (1 point) Points P and Q are moving in circular paths around the origin O with angular velocities ω_P and ω_Q .

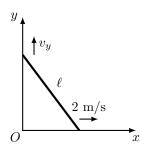
The two particles are moving with the same speed. Which statement is true?


- A. $|\omega_P| \leq \frac{1}{2} |\omega_Q|$
- B. $\frac{1}{2}|\omega_Q| < |\omega_P| \le |\omega_Q|$
- C. $|\omega_Q| < |\omega_P| \le 2|\omega_Q|$
- D. $2|\omega_Q| < |\omega_P|$

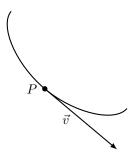
2/1. (1 point) A particle moves so that its position vector in the Cartesian basis is given by

$$\vec{r} = \cos t \,\hat{\imath} + \sin t \,\hat{\jmath} + t \,\hat{k} \, \, \mathrm{m}.$$

- Using cylindrical coordinates, what is the angular component of velocity v_{θ} at $t = \pi/4$ s?
 - A. $v_{\theta} < -1 \text{ m/s}$
 - B. $-1 \text{ m/s} \le v_{\theta} < 0 \text{ m/s}$
 - C. $v_{\theta} = 0 \text{ m/s}$
 - D. $0 \text{ m/s} \le v_{\theta} < 1 \text{ m/s}$
 - E. 1 m/s $\leq v_{\theta}$


3/1. (1 point) The position vector \vec{r} and velocity \vec{v} for a single particle P are shown below at a particular instant.

Which statement about \dot{r} is true at this instant?


- A. $\dot{r} > 0$
- B. $\dot{r} = 0$
- C. $\dot{r} < 0$

4/1. (1 point) A ladder leaning against the wall has a fixed length of $\ell=5$ m. The bottom of the ladder is 3 m from the wall and is moving along the ground away from the wall at a speed of 2 m/s. What is the vertical component of the velocity v_y of the top of the ladder, assuming it remains in contact with the wall?

- A. $v_y < -1 \text{ m/s}$
- B. $-1 \text{ m/s} \le v_y < 0 \text{ m/s}$
- C. $v_y = 0 \text{ m/s}$
- D. 0 m/s $< v_y < 1$ m/s
- E. 1 m/s $< v_y$

5/1. (1 point) A point P is moving around a curve and at a given instant has position and velocity \vec{v} as shown.

Which direction is the closest to the direction of the normal basis vector \hat{e}_n at the instant shown?

- A. 🗸
- В. 🦴
- C. <
- D. /