TAM 212. Final. Dec 19, 2013. 'Quiz'

•	There are 30	questions.	each wort	h 5	points. (Quiz	has	just 5 d	questions.	١
---	--------------	------------	-----------	-----	-----------	------	-----	----------	------------	---

- You must not communicate with other students during this test.
- No electronic devices allowed.
- This is a 3 hour exam.
- $\bullet\,$ Do not turn this page until instructed to do so.
- There are several different versions of this exam.

Fill in your information:						
Full Name:						
UIN (Student Number):						
NetID:						

2. Fill in the following answers on the Scantron form:

- 91. A
- 92. A
- 93. A
- 94. A
- 95. D
- 96. C

1. (5 points) A rigid wheel with radius r and moment of inertia I_O is pinned at point O. An inextensible massless rope connects two masses m_1 and m_2 , and moves without slipping on the wheel. Gravity g acts downwards.

At the instant shown, all bodies are stationary and we have:

$$r=2 \text{ m}$$

 $I_O=16 \text{ kg m}^2$
 $m_1=2 \text{ kg}$
 $m_2=4 \text{ kg}$
 $g=10 \text{ m/s}^2$

What is the magnitude of the angular acceleration $\vec{\alpha}$ of the wheel?

- (A) $0 \text{ rad/s}^2 < \alpha < 1 \text{ rad/s}^2$
- (B) $2 \text{ rad/s}^2 \le \alpha < 3 \text{ rad/s}^2$
- (C) \bigstar 1 rad/s² $\leq \alpha <$ 2 rad/s²
- (D) $3 \text{ rad/s}^2 \le \alpha$
- (E) $\alpha = 0 \text{ rad/s}^2$

Solution. Taking $\vec{\alpha} = \alpha \hat{k}$, we have that the acceleration of mass m_1 is $\vec{a}_1 = -r\alpha \hat{j}$ and that of mass m_2 is $\vec{a}_2 = r\alpha \hat{j}$. The free body diagram is:

Newton's equations for each mass and Euler's equations for the wheel give:

$$T_1\hat{\jmath} - m_1g\hat{\jmath} = m_1\vec{a}_1 = -m_1r\alpha\hat{\jmath}$$

$$T_2\hat{\jmath} - m_2g\hat{\jmath} = m_2\vec{a}_2 = m_2r\alpha\hat{\jmath}$$

$$T_1r\hat{k} - T_2r\hat{k} = I_O\vec{\alpha} = I_O\alpha\hat{k}$$

$$\Rightarrow \begin{cases} \alpha = -1 \text{ rad/s}^2 \\ T_1 = 24 \text{ N} \\ T_2 = 32 \text{ N} \end{cases}$$

The magnitude of the acceleration is thus $\alpha=1~{\rm rad/s^2}.$

2. (5 points) A bearing is depicted below in which four discs roll without slipping inside a circular cavity which does *not* move.

At all times the body \mathcal{B}_1 is centered in the cavity, and at the time shown body \mathcal{B}_2 is directly above \mathcal{B}_1 . The radius of \mathcal{B}_1 is 20 cm and the radius of \mathcal{B}_2 is 5 cm. If the angular velocity and angular acceleration of \mathcal{B}_1 are $\vec{\omega}_1 = 10\hat{k}$ rad/s and $\vec{\alpha}_1 = -\hat{k}$ rad/s², what is the angular acceleration $\vec{\alpha}_2$ of body \mathcal{B}_2 ?

- (A) $\vec{\alpha}_2 = -4\hat{k} \text{ rad/sec}^2$.
- (B) $\star \vec{\alpha}_2 = 2\hat{k} \text{ rad/sec}^2$.
- (C) $\vec{\alpha}_2 = 4\hat{k} \text{ rad/sec}^2$.
- (D) $\vec{\alpha}_2 = -2\hat{k} \operatorname{rad/sec}^2$.
- (E) $\vec{\alpha}_2 = 8\hat{k} \text{ rad/sec}^2$.

Solution. Let A_1 and A_2 be the points at which \mathcal{B}_1 and \mathcal{B}_2 are in contact. We know that $\vec{v}_{A_1} = \vec{v}_{A_2}$ and so $\vec{\omega}_1 \times (20\hat{\jmath}) = \vec{\omega}_2 \times (-10\hat{\jmath})$, and so $\omega_2 = -2\omega_1$. This relationship holds at all times and so we have $\dot{\omega}_2 = -2\dot{\omega}_1$; namely, at the time shown $\alpha_2 = (-2)(-1) = 2 \text{ rad/s}^2$.

3. (5 points) Two rigid bodies bodies are in contact, rolling without slipping as seen below.

The point of contact on body \mathcal{B}_1 is A_1 and the point of contact on body \mathcal{B}_2 is A_2 . In the configuration shown, which could be the acceleration vectors of these two points?

(A)
$$\vec{a}_{A_1} = -\hat{j} \text{ m/s}^2 \text{ and } \vec{a}_{A_2} = \hat{j} \text{ m/s}^2.$$

(B)
$$\vec{a}_{A_1} = -2\hat{\imath} + 9\hat{\jmath} \text{ m/s}^2 \text{ and } \vec{a}_{A_2} = -2\hat{\imath} + 11\hat{\jmath} \text{ m/s}^2.$$

(C)
$$\vec{a}_{A_1} = 5\hat{\imath} + 5\hat{\jmath} \text{ m/s}^2 \text{ and } \vec{a}_{A_2} = -5\hat{\imath} - 5\hat{\jmath} \text{ m/s}^2.$$

(D)
$$\vec{a}_{A_1} = -1\hat{\imath} + 10\hat{\jmath} \text{ m/s}^2 \text{ and } \vec{a}_{A_2} = -\hat{\imath} - 10\hat{\jmath} \text{ m/s}^2.$$

(E)
$$\bigstar \vec{a}_{A_1} = -\hat{\imath} + \hat{\jmath} \text{ m/s}^2 \text{ and } \vec{a}_{A_2} = \hat{\jmath} \text{ m/s}^2.$$

Solution. As discussed in lecture, the no slip condition implies that the tangential acceleration of the contact points must be equal; the normal components can be different. In the configuration given the tangential direction is given by $\hat{\jmath}$, so \vec{a}_{A_1} and \vec{a}_{A_2} must have the same $\hat{\jmath}$ component — there is only one such option.

4. (5 points) A body has uniform thickness in the z direction and uniform density, and its shape in the x-y plane is bounded by the curves $y = x^2/m$, y = 0 m, and x = 2 m, as shown below.

What is the x coordinate C_x of the center of mass C of the body?

- (A) $1.8 \text{ m} \le C_x$
- (B) $\bigstar 1.5 \text{ m} \le C_x < 1.6 \text{ m}$
- (C) $1.6 \text{ m} \le C_x < 1.7 \text{ m}$
- (D) $C_x < 1.5 \text{ m}$
- (E) $1.7 \text{ m} \le C_x < 1.8 \text{ m}$

Solution. For thickness h and density ρ , the total mass is

$$m = \int_{0 \text{ m}}^{2 \text{ m}} \rho h(x^2/\text{m}) dx$$
$$= \frac{8}{3} \rho h \text{ m}^2.$$

The x coordinate of the center of mass is then:

$$C_x = \frac{1}{m} \int_0^2 \rho h x(x^2/\text{m}) dx$$
$$= \frac{1}{\frac{8}{3}\rho h \text{ m}^2} 4\rho h \text{ m}^3$$
$$= 1.5 \text{ m}.$$

5. (5 points) A circular rigid body with center of mass C, mass m=2 kg, moment of inertia $I_C=1$ kg m², and radius r=1 m is sitting on the ground as shown. The coefficient of friction between the body and the ground is $\mu=0.1$. A driving force $\vec{D}=3\hat{\imath}$ N acts at point P, and gravity g=10 m/s² acts vertically.

What is the magnitude of the friction force \vec{F} ?

- (A) F = 4 N
- (B) F = 2 N
- (C) $\star F = 1 \text{ N}$
- (D) F = 3 N
- (E) F = 0 N

Solution. With friction $\vec{F} = -F\hat{\imath}$ and normal force $\vec{N} = N\hat{\jmath}$, the free body diagram is:

Assuming sticking and taking $\vec{a} = a\hat{i}$ and $\vec{\alpha} = \alpha \hat{k}$, we have:

$$\vec{D} - F\hat{\imath} + N\hat{\jmath} - mg\hat{\jmath} = m\vec{a} = ma\hat{\imath}$$

$$-Fr\hat{k} = I_C\vec{\alpha} = I_C\alpha\hat{k}$$

$$a = -r\alpha$$

$$\Rightarrow \begin{cases} N = 20 \text{ N} \\ F = 1 \text{ N} \\ a = 1 \text{ m/s}^2 \\ \alpha = -1 \text{ rad/s}^2 \end{cases}$$

Checking the Coulomb friction condition gives:

$$|F| \stackrel{?}{\leq} \mu |N|$$

$$1 \stackrel{?}{\leq} 0.1 \times 20$$

$$1 < 2$$

Thus it is sticking and F = 1 N.