TAM 212. Final. Dec 19, 2013. 'Quiz'

•	There are 30	questions.	each wort	h 5	points. (Quiz	has	just 5 d	questions.	١
---	--------------	------------	-----------	-----	-----------	------	-----	----------	------------	---

- You must not communicate with other students during this test.
- No electronic devices allowed.
- This is a 3 hour exam.
- $\bullet\,$ Do not turn this page until instructed to do so.
- There are several different versions of this exam.

Fill in your information:						
Full Name:						
UIN (Student Number):						
NetID:						

2. Fill in the following answers on the Scantron form:

- 91. A
- 92. A
- 93. A
- 94. A
- 95. D
- 96. C

1. (5 points) A rigid wheel with radius r and moment of inertia I_O is pinned at point O. An inextensible massless rope connects two masses m_1 and m_2 , and moves without slipping on the wheel. Gravity g acts downwards.

At the instant shown, all bodies are stationary and we have:

$$r=2 \text{ m}$$

 $I_O=16 \text{ kg m}^2$
 $m_1=2 \text{ kg}$
 $m_2=4 \text{ kg}$
 $g=10 \text{ m/s}^2$

What is the magnitude of the angular acceleration $\vec{\alpha}$ of the wheel?

- (A) $0 \text{ rad/s}^2 < \alpha < 1 \text{ rad/s}^2$
- (B) $2 \text{ rad/s}^2 \le \alpha < 3 \text{ rad/s}^2$
- (C) $1 \text{ rad/s}^2 \le \alpha < 2 \text{ rad/s}^2$
- (D) $3 \text{ rad/s}^2 \le \alpha$
- (E) $\alpha = 0 \text{ rad/s}^2$

2. (5 points) A bearing is depicted below in which four discs roll without slipping inside a circular cavity which does not move.

At all times the body \mathcal{B}_1 is centered in the cavity, and at the time shown body \mathcal{B}_2 is directly above \mathcal{B}_1 . The radius of \mathcal{B}_1 is 20 cm and the radius of \mathcal{B}_2 is 5 cm. If the angular velocity and angular acceleration of \mathcal{B}_1 are $\vec{\omega}_1 = 10\hat{k}$ rad/s and $\vec{\alpha}_1 = -\hat{k}$ rad/s², what is the angular acceleration $\vec{\alpha}_2$ of body \mathcal{B}_2 ?

- (A) $\vec{\alpha}_2 = -4\hat{k} \text{ rad/sec}^2$.
- (B) $\vec{\alpha}_2 = 2\hat{k} \text{ rad/sec}^2$.
- (C) $\vec{\alpha}_2 = 4\hat{k} \text{ rad/sec}^2$.
- (D) $\vec{\alpha}_2 = -2\hat{k} \operatorname{rad/sec}^2$.
- (E) $\vec{\alpha}_2 = 8\hat{k} \text{ rad/sec}^2$.

3. (5 points) Two rigid bodies bodies are in contact, rolling without slipping as seen below.

The point of contact on body \mathcal{B}_1 is A_1 and the point of contact on body \mathcal{B}_2 is A_2 . In the configuration shown, which could be the acceleration vectors of these two points?

- (A) $\vec{a}_{A_1} = -\hat{j} \text{ m/s}^2 \text{ and } \vec{a}_{A_2} = \hat{j} \text{ m/s}^2.$
- (B) $\vec{a}_{A_1} = -2\hat{\imath} + 9\hat{\jmath} \text{ m/s}^2 \text{ and } \vec{a}_{A_2} = -2\hat{\imath} + 11\hat{\jmath} \text{ m/s}^2.$
- (C) $\vec{a}_{A_1} = 5\hat{\imath} + 5\hat{\jmath} \text{ m/s}^2 \text{ and } \vec{a}_{A_2} = -5\hat{\imath} 5\hat{\jmath} \text{ m/s}^2.$
- (D) $\vec{a}_{A_1} = -1\hat{\imath} + 10\hat{\jmath} \text{ m/s}^2 \text{ and } \vec{a}_{A_2} = -\hat{\imath} 10\hat{\jmath} \text{ m/s}^2.$
- (E) $\vec{a}_{A_1} = -\hat{\imath} + \hat{\jmath} \text{ m/s}^2 \text{ and } \vec{a}_{A_2} = \hat{\jmath} \text{ m/s}^2.$

4. (5 points) A body has uniform thickness in the z direction and uniform density, and its shape in the x-y plane is bounded by the curves $y=x^2/m$, y=0 m, and x=2 m, as shown below.

What is the x coordinate C_x of the center of mass C of the body?

- (A) $1.8 \text{ m} \le C_x$
- (B) $1.5 \text{ m} \le C_x < 1.6 \text{ m}$
- (C) $1.6 \text{ m} \le C_x < 1.7 \text{ m}$
- (D) $C_x < 1.5 \text{ m}$
- (E) $1.7 \text{ m} \le C_x < 1.8 \text{ m}$

5. (5 points) A circular rigid body with center of mass C, mass m=2 kg, moment of inertia $I_C=1$ kg m², and radius r=1 m is sitting on the ground as shown. The coefficient of friction between the body and the ground is $\mu=0.1$. A driving force $\vec{D}=3\hat{\imath}$ N acts at point P, and gravity g=10 m/s² acts vertically.

What is the magnitude of the friction force \vec{F} ?

- (A) F = 4 N
- (B) F = 2 N
- (C) F = 1 N
- (D) F = 3 N
- (E) F = 0 N