#9-17. Rod lifting kinetics (rodLiftKinetics) A uniform rigid rod of mass $m=2~\mathrm{kg}$ and length $\ell=8~\mathrm{m}$ starts at rest on a flat ground as shown. Force $\vec{D} = -15\hat{\imath} + 37\hat{\jmath}$ N acts at point P on the right end, and gravity g = 9.8 m/s² acts vertically. The coefficient of friction between the rod and the ground is $\mu = 0.5$. What is the acceleration \vec{a}_C of point C? \hat{j} m/s² Q slips left unlikely

FTN

Slipping left

F & My

2 = = m = 2

> Mc= = Ic (2)

D= nW

1 ag=0

Check: Fopposes mother

Efrichen force at contact.

N= mg=Dy dyn!

$$\vec{r}_{c} = \frac{1}{m} \iint \vec{r} dA$$

$$m = \iint \vec{r} dA = \int \iint 1 dy dx$$

$$\vec{r}_{o} = \int \vec{r}_{o}(x) dy dx$$

$$\vec{r}_c = \frac{1}{M} \int \int \int \int \int (x_c^2 + y_s^2) dy dx$$

$$\int (3\hat{c} + 2\pi\hat{s}) dx = \int 3\hat{c} dx + \int 2\pi\hat{s} dx$$

$$= \hat{c} \int 3dx + \hat{j} \int 2xdx$$

$$= \left(\int 3dx\right) \hat{c} + \left(\int 2xdx\right) \hat{s}$$

$$= \int \int g((x-x)^2 + (y-y)^2) dydx$$

$$= \int \int g((x-x)^2 + (y-y)^2) dydx$$

$$= \int \int |g((x-x)^2 + (y-y)^2)|^2 dydx$$

$$\vec{F} = \hat{c} + \hat{c}$$

$$\vec{F} \cdot d\vec{r} = \int \vec{F} \cdot \vec{v} dt$$

$$\vec{r}(t) = \int \vec{r} \cdot \vec{v} dt$$