Announcements

- HW4/R9 due Mon, May 4
- HW10 not for credit
- RIO Canceled
- Final exam schedule

Dry/Coulomb Fridion (2D) - multiple cases:

A Slip 1. relative motion $v \neq 0$ or $a \neq 0$ $z \cdot F = \mu N$

3. Ê opposes motion

(î or â)

Stick

(. No relative motion

V=0 and a=0

Z. F = MN

(magnitudes)

1. no relative motion

v=0 and d=0

2. critical friction force

F= MN

Solution Procedure (known case) - determine case (stick, transition, slip left, slip right) - FBD, equations depending on case, solve Solution Procedure (unknown Case) Contact - Try stick: assume V=0, a=0, N, F solve for motion, N, F check |F| = µ/N| contact point - Try slip left: assume F= nN to the right solve for motion of contact point dud N,F assumed check v + D or a + O and firston F opposes motion (î or â) Assume F= uN to the left costact then same as slip left. - Try slip right:

A uniform rigid disk of mass $m=7~\mathrm{kg}$ and radius $r=4~\mathrm{m}$ starts at rest on a flat ground as shown. Force $\vec{D}=-44\hat{\imath}+34\hat{\jmath}$ N acts at point P on the top edge, and gravity $g=9.8~\mathrm{m/s^2}$ acts vertically. The coefficient of friction between the disk and the ground is $\mu=0.25$.

rolling w/o slip

What is the angular acceleration $\vec{\alpha}$ of the disk?

$$\vec{\alpha} = \hat{k} \operatorname{rad/s^2}$$

5hzk

Which
$$A. \Sigma \vec{f} = m\vec{a}_{c}$$

eqn X $B. \Sigma M_{Q2} = I_{Q2} x_{2}$
do we $C. \Sigma M_{C2} = I_{C2} x_{2}$
NOT $D. \vec{a}_{Q} = D$
use? $F = \mu N$

What
$$A \cdot |F| \leq_{n} |N|$$

What $B \cdot \hat{F} = pposes$ $\hat{V} = \hat{A}$

We $C \cdot a_{cx} = 0$

Check? $D \cdot a_{qx} = 0$
 $E \cdot |F| = n |N|$

A uniform rigid disk of mass $m=7~\mathrm{kg}$ and radius $r=4~\mathrm{m}$ starts at rest on a flat ground as shown. Force $\vec{D}=-44\hat{\imath}+34\hat{\jmath}~\mathrm{N}$ acts at point P on the top edge, and gravity $g=9.8~\mathrm{m/s^2}$ acts vertically. The coefficient of friction between the disk and the ground is $\mu=0.25$.

What is the angular acceleration $\vec{\alpha}$ of the disk?

$$\vec{\alpha} = \hat{k} \operatorname{rad/s^2}$$

$$\vec{F} = -14.72N$$
 $\vec{N} = 34.65N$
 $\vec{a}_c = -8.382 \text{ m/s}^2$
 $\vec{a}_c = 2.10 \text{ rad/s}^2$

A uniform rigid disk of mass $m=7~\mathrm{kg}$ and radius $r=4~\mathrm{m}$ starts at rest on a flat ground as shown. Force $\vec{D}=-44\hat{\imath}+34\hat{\jmath}~\mathrm{N}$ acts at point P on the top edge, and gravity $g=9.8~\mathrm{m/s^2}$ acts vertically. The coefficient of friction between the disk and the ground is $\mu=0.25$.

What is the angular acceleration $\vec{\alpha}$ of the disk?

$$\vec{\alpha} = \hat{k} \operatorname{rad/s}^2$$

Contact.

Which
$$A. \Sigma \vec{F} = m\vec{a}_{c}$$

eqn X $B. \Sigma M_{Q2} = I_{Q2} x_{2}$
do we $C. \Sigma M_{C2} = I_{C2} x_{2}$
NOT $O. \vec{a}_{Q} = O$
use? $E. F = \mu N$

What
$$A \cdot |F| \leq_{n} |N|$$

What $B \cdot \hat{F} = pposes$ $\hat{V} = a$ and $C \cdot acx = 0$

Check? $D \cdot aqx = 0$
 $E \cdot |F| = n |N|$

A uniform rigid disk of mass $m=7~\mathrm{kg}$ and radius $r=4~\mathrm{m}$ starts at rest on a flat ground as shown. Force $\vec{D}=-44\hat{\imath}+34\hat{\jmath}~\mathrm{N}$ acts at point P on the top edge, and gravity $g=9.8~\mathrm{m/s^2}$ acts vertically. The coefficient of friction between the disk and the ground is $\mu=0.25$.

P opposes

the motion of Q.

What is the angular acceleration $\vec{\alpha}$ of the disk?

$$\vec{\alpha} = \hat{k} \operatorname{rad/s^2}$$

Is this the case?

A. Yes

A uniform rigid disk of mass $m=7~\mathrm{kg}$ and radius $r=4~\mathrm{m}$ starts at rest on a flat ground as shown. Force $\vec{D}=-44\hat{\imath}+34\hat{\jmath}~\mathrm{N}$ acts at point P on the top edge, and gravity $g=9.8~\mathrm{m/s^2}$ acts vertically. The coefficient of friction between the disk and the ground is $\mu=0.25$.

What is the angular acceleration $\vec{\alpha}$ of the disk?

$$\vec{\alpha} = \hat{k} \operatorname{rad/s^2}$$

Which
$$A. \Sigma \vec{F} = m\vec{a}_{c}$$

eqn $B. \Sigma M_{Q2} = I_{Q2} x_{2}$
do we $C. \Sigma M_{C2} = I_{C2} x_{2}$
NOT $\vec{a}_{Q} = 0$
use? $E. \vec{F} = \mu N$

What
$$A \cdot |F| \leq_{n} |N|$$

What $C \cdot \hat{F} = pposes \hat{V} = \hat{A}$

We $C \cdot a_{c*} = 0$

Check? $D \cdot a_{q*} = 0$
 $E \cdot |F| = n |N|$

A uniform rigid disk of mass $m=7~\mathrm{kg}$ and radius $r=4~\mathrm{m}$ starts at rest on a flat ground as shown. Force $\vec{D}=-44\hat{\imath}+34\hat{\jmath}~\mathrm{N}$ acts at point P on the top edge, and gravity $g=9.8~\mathrm{m/s^2}$ acts vertically. The coefficient of friction between the disk and the ground is $\mu=0.25$.

What is the angular acceleration $\vec{\alpha}$ of the disk?

$$\vec{\alpha} = \hat{k} \operatorname{rad/s}^2$$

$$\vec{F} = -8.65 £ N$$

$$\vec{A} = 34.6 £ N$$

$$\vec{A}_c = -7.52 £ m/s^2$$

$$\vec{A}_c = 2.52 £ m/s^2$$

$$\vec{A}_a = 2.58 £ m/s^2$$

Is Mis June?

A) Yes

B. Mo

Ex

Pisk starts at rust.

No gravity.

Force $D_X > 0$ is applied at P.

Q accelerates

B. 2200

C. right

Pisk starts at rest.

No granty.

Force Dx > 0 is applied at P.

Q accelerates

A. left

B. 280

C. night

$$A. 2\frac{D_{x}}{M}$$

$$B. \frac{D_{x}}{M}$$

$$C. \frac{D_{x}}{M}$$

$$E. -2\frac{D_{x}}{M}$$

$$A. \frac{20x}{mr}$$

$$B. \frac{0x}{mr}$$

$$C. \frac{0}{mr}$$

$$E_{x} - \frac{20x}{mr}$$

$$A. 2 \frac{D_{x}}{M}$$

$$B. \frac{D_{x}}{M}$$

$$C. \frac{D_{x}}{M}$$

$$E. -2 \frac{D_{x}}{M}$$