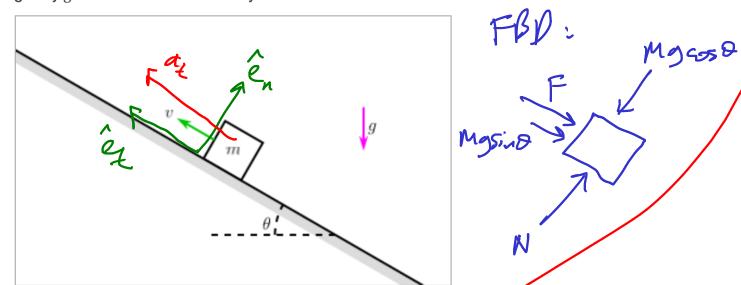
Today - Friction

2 Main cases:

3, À oppose motion (v orâ)

B Sticking

1. no relative motion


$$V = 0$$
, $a = 0$

2. $F \leq \mu N$

m= coeff of friedom.

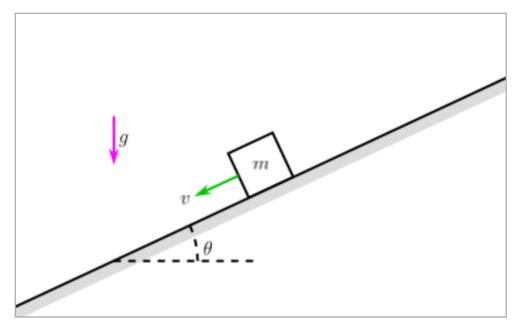
#9-2. Acceleration of a block with friction (slopeFrictionAcc)

A block of mass m=8 kg is sliding up a sloped ground with speed v=9 m/s. The ground is at an angle of $\theta=30^\circ$ from horizontal, the coefficient of friction between the block and ground is $\mu=0.25$, and gravity g=9.8 m/s² acts vertically.

A. Ship
B. Stick
C. transition

A. 1 B. 2 C. 3 D. 4 E. 5

What is the acceleration \vec{a} of the block?


$$\vec{a} = \hat{j} \text{ m/s}^2$$

N=mgcosD F=mN

A. $Ma_{t} = F + Mg \sin \theta$ B. $Ma_{t} = -F + Mg \sin \theta$ C. $Ma_{t} = F - Mg \sin \theta$ D. $Ma_{t} = -F - Mg \sin \theta$

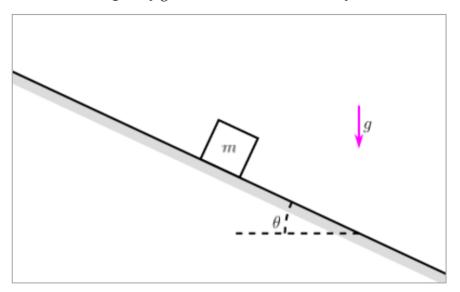
#9-2. Acceleration of a block with friction (slopeFrictionAcc)

A block of mass $m=8~\mathrm{kg}$ is sliding down a sloped ground with speed $v=5~\mathrm{m/s}$. The ground is at an angle of $\theta=25^\circ$ from horizontal, the coefficient of friction between the block and ground is $\mu=0.25$, and gravity $g=9.8~\mathrm{m/s^2}$ acts vertically.

What is the acceleration \vec{a} of the block?

 $\vec{a} = \hat{j} \text{ m/s}^2$

Given that \vec{g} is down and \vec{v} is down the slope:


(A. \vec{d} must be down the slope

(B. \vec{d} must be up the slope

(C) \vec{d} might be up or down the slope

#9-4. Minimum coefficient of friction on a slope (slopeFrictionMinCoeff)

A block of mass $m=9~\mathrm{kg}$ starts at rest on a sloped ground. The ground is at an angle of $\theta=25^\circ$ from horizontal and gravity $g=9.8~\mathrm{m/s^2}$ acts vertically.

VED, 4=0 K

What is the minimum coefficient of friction μ so that the block will not slide?

$$\mu =$$

Mysind F

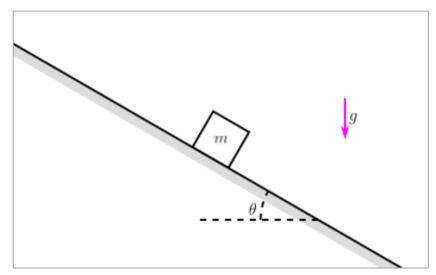
FINIM

A. Slip B. Stick Transition

A = D D = D D = D D = D $E = a \le D$

M depends on:

A. M, D, 9


B. M, D

C. D, 9

D. M, 9

#9-9. Motion of a block with friction (slopeFrictionStick)

A block of mass m=3 kg starts at rest on a sloped ground. The ground is at an angle of $\theta=30^\circ$ from horizontal, the coefficient of friction between the block and ground is $\mu = 0.5$, and gravity $g = 9.8 \text{ m/s}^2$ acts vertically.

What type of motion does the block experience?

- The block sticks and does not move.
- The block slips and accelerates down the slope.

Many Scenarios

are kinematically consistent?

Stick -s assumed motion a = 0 $mg \sin \theta / mg \cos \theta$ NTRF Check: |F| = y|N| F=14-7 N N = 25.5 NMN = 12.75N 1F1 = MW1 not the.

m=3kg, 0=30°, 0=9.8m/s

Slip up - assumed force F=TMN êz mgsina N check: $a \neq 0$ \hat{F} opposes \hat{a} a=- 9.15 m/s2 F=-12-74Nê, N = 25.5N ato / Follosos

Slip down - assumed force F= Mleg V_KF check: a = 0 Ê opposes â a = -4.24 m/s24 == 12-74N g N = 25.5 N Check