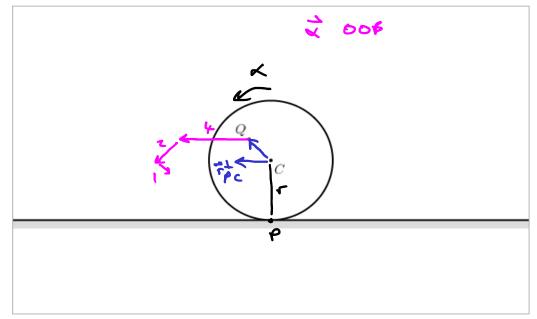
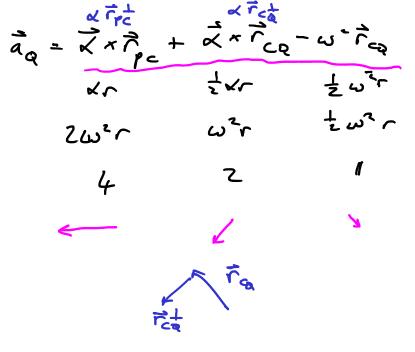

Exam review - no iclicker points.

Acceleration of rolling bodies - no slip.

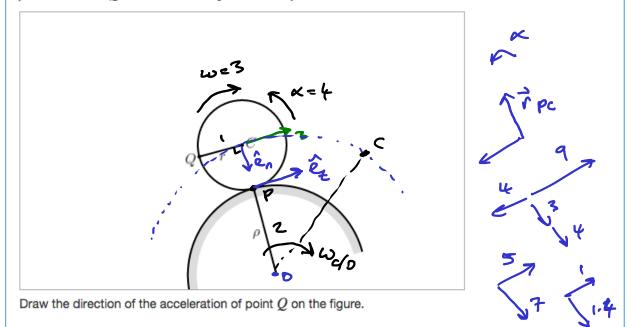
#7-18. Acceleration of a point on a body rolling horizontally, graphical


A circular rigid body is rolling without slipping on a fixed flat surface in 2D as shown below. Point Q is fixed to the body and the angular acceleration $\vec{\alpha} = \alpha \hat{k}$ and angular velocity $\vec{\omega} = \omega \hat{k}$ of the body satisfy $3\alpha = \omega^2$.


Just for rolling on flat surfaces $\overrightarrow{a}_{c} = \overrightarrow{\Delta} \times \overrightarrow{r}_{co} - \overrightarrow{\omega}^{2} \overrightarrow{r}_{co}$ $= \overrightarrow{\Delta} \times \overrightarrow{r}_{co} - \overrightarrow{\omega}^{2} \overrightarrow{r}_{co}$

#7-18. Acceleration of a point on a body rolling horizontally, graphical

A circular rigid body is rolling without slipping on a fixed flat surface in 2D as shown below. Point Q is fixed to the body and the angular acceleration $\vec{\alpha} = \alpha \hat{k}$ and angular velocity $\vec{\omega} = \omega \hat{k}$ of the body satisfy $\alpha = 2\omega^2$.



Draw the acceleration direction \hat{a}_Q of point Q.

#7-26. Acceleration direction of rolling on a curved surface

A circular rigid body is rolling without slipping on a curved surface in 2D, as shown. At the current instant the body has a clockwise angular velocity of 3 rad/s and a counterclockwise angular acceleration of 4 rad/s². The circular rigid body has radius r=1 m and the curved surface has radius of curvature $\rho=2$ m. Point Q is fixed to the edge of the body.

