TAM 212 - Dynamics

Wayne Chang

Summer 2019

Momentum of a Rigid Body

Linear Momentum: $\vec{P} = m\vec{v}_C$

Newton's Equations:

Angular Momentum: $L_{Cz} = I_{Cz}\omega_z$

Newton's Equations:

Principle of Impulse-Momentum

Linear Momentum: $\vec{P}_{Ci} + \int F dt = \vec{P}_{Cf}$

Angular Momentum: $\vec{L}_{Oi} + \int \vec{M}_O \ dt = \vec{L}_{Of}$

Conservation laws:

- If $\Sigma F = 0$, then \vec{P}_C is a constant: $\vec{P}_{C1} = \vec{P}_{C2}$
- If $\Sigma M_C=0$, then \vec{L}_C is a constant: $\vec{L}_{C1}=\vec{L}_{C2}$

Momentum of a system of bodies:

• Linear: $\vec{P}_C = \Sigma \vec{P}_{Ci}$; angular: $\vec{L}_C = \Sigma \vec{L}_{Ci}$

A diver jumps off a diving board, does some fancy flips, then enter the water.

 t_1 = just before the jump

 t_2 = just after the jump

 t_3 = just before the diver enters the water

Which is true for $t_1 \rightarrow t_2$?

- A. \vec{P}_C and \vec{L}_C are both conserved
- B. Only \vec{P}_C is conserved
- C. Only \vec{L}_C is conserved
- D. Neither \vec{P}_C nor \vec{L}_C is conserved

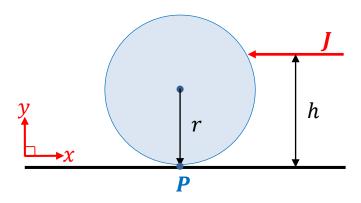
Which is true for $t_2 \rightarrow t_3$?

B.

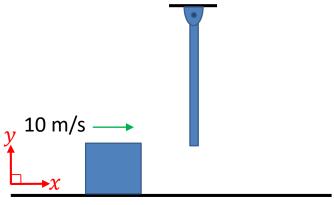
Which body position does the diver rotate faster?

A.

What kind of yo-yo is better?


- A. Made of light plastic material
- B. Made of heavy metal material

- A. Solid disks
- B. Hollow cylinders


- A. Fixed axel center
- B. Bearing center

A billiard ball is a uniform sphere with radius r. Where should we hit the ball (introduce impulse J) so that there is no friction at P?

A square block with mass $m_B = 1$ kg and initial velocity 3 m/s slides along a smooth surface and collides with the end of a slender rod with mass $m_R = 2$ kg and length L = 0.2 m. The rod is initially at rest. The coefficient of restitution between the box and the rod is e = 0.7. Find the velocity of the block after the collision.

