TAM 212 - Dynamics

Wayne Chang

Summer 2019

Recap

Friction

Today

Linear and Angular Momentum

A. Slip

1. Relative motion

$$v_{Px} \neq 0$$
 or $a_{Px} \neq 0$

- 2. $F = \mu N$
- 3. \hat{F} opposes motion

$$(\hat{v}_P \text{ or } \hat{a}_P)$$

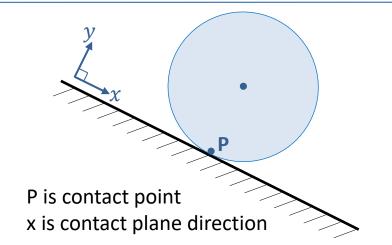
B. Stick

1. No relative motion

$$v_{Px} = 0$$
 or $a_{Px} = 0$

 $2. F \leq \mu N$

(magnitudes)


C. <u>Transition</u>

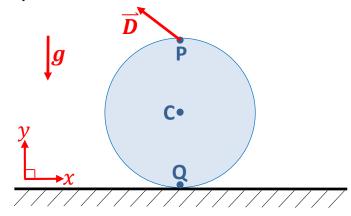
1. No relative motion

$$v_{Px} = 0$$
 or $a_{Px} = 0$

2. Critical friction force

$$F = \mu N$$

Solution Procedure (known case)


- Determine case (stick, transition, slip left, slip right)
- FBD, equations depending on case, solve

Solution Procedure (unknown case)

- Try stick: ① Assume $v_{Px} = 0$, $a_{Px} = 0$, $N, F \leq \mu N$
 - ② Solve for motion, N, F
 - ③ Check $|F| \le \mu |N|$ (actual friction \le available friction)
- Try slip left: ① Assume $F = \mu N$ to the right
 - 2 Solve for motion of contact point, N, F
 - ③ Check $v_{Px} \neq 0$, $a_{Px} \neq 0$ and \hat{F} opposes motion (\hat{v} or \hat{a})
- Try slip right: ① Assume $F = \mu N$ to the left
 - 23 same as slip left

 \hat{v} if in motion \hat{a} if start from rest

A uniform rigid disk of mass m=7 kg and radius r=4 m starts at rest on a flat ground as shown. Force $\overrightarrow{D}=-44\hat{\imath}+34\hat{\jmath}$ N acts at point P on the top edge, and g=9.8 m/s² acts vertically. The coefficient of friction between the block and ground is $\mu=0.25$.

What is the angular acceleration $\vec{\alpha}$ of the disk?

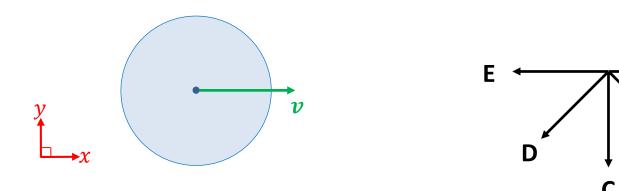
$$\vec{\alpha} = \underline{\qquad} \hat{k} \operatorname{rad/s^2}$$

Momentum of a Point Mass

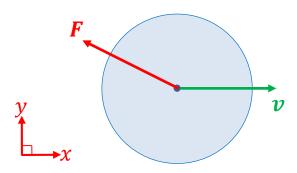
Linear Momentum: $\vec{P} = m\vec{v}$

Angular Momentum:
$$\vec{L}_O = \vec{r}_{OP} \times \vec{P}$$

= $m\vec{r}_{OP} \times \vec{v}$
= $m\vec{r}_{OP} \times (\vec{\omega} \times \vec{r}_{OP})$


Principle of Impulse-Momentum

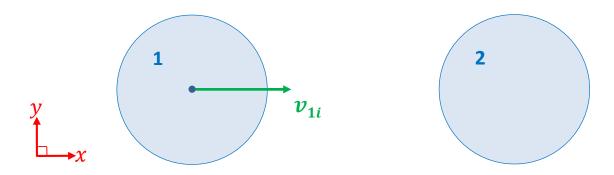
Linear Momentum: $\vec{P}_i + \Delta \vec{P} = \vec{P}_f$


Angular Momentum: $\vec{L}_{Oi} + \Delta \vec{L}_{O} = \vec{L}_{Of}$

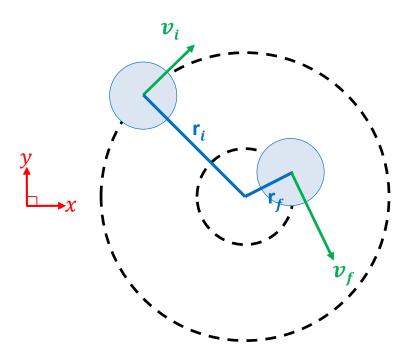
From Newton's Equation:

A particle is initially moving to the right at 5 m/s. Which direction should an impulse be applied to redirect the particle downward?

A particle is initially moving to the right at 5 m/s. A constant force $\vec{F} = -\hat{\imath} + 2\hat{\jmath}$ N is applied to the particle. How long does it take to redirect the particle's motion to upward only?


Conservation Law

If $\Sigma \vec{F} = 0 = \dot{\vec{P}}$, then \vec{P} is a constant.


If
$$\Sigma \overrightarrow{M}_{OZ} = 0 = \dot{\overrightarrow{L}}_{OZ}$$
, then \overrightarrow{L}_{OZ} is a constant.

Coefficient of restitution: $e = \frac{v_{2f} - v_{1f}}{v_{1i} - v_{2i}}$

Particle 1 is initially moving to the right at 5 m/s and comes into contact with Particle 2 initially at rest. If the two particles stick together after collision, what is the terminal velocity of the two particles?

A tethered particle is moving on a horizontal smooth surface with an initial speed of 7 m/s. If the tethered is shortened by a factor of 3, what is the resulting speed of the particle?

