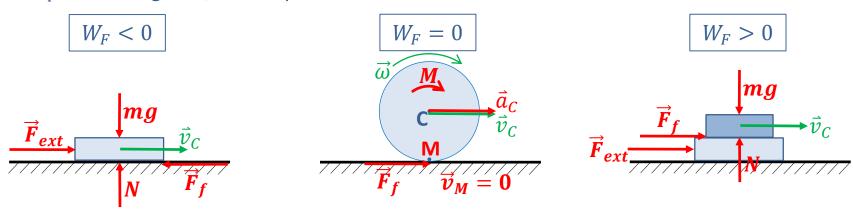
TAM 212 - Dynamics

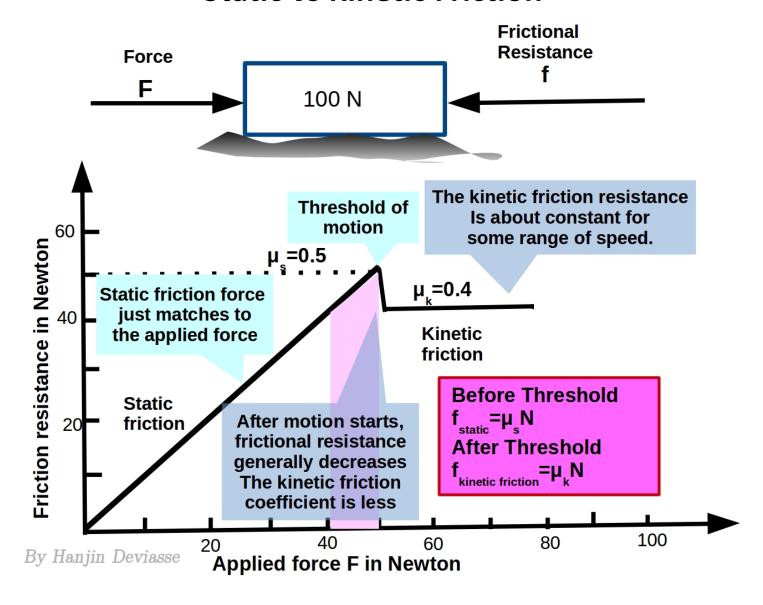
Wayne Chang

Summer 2019

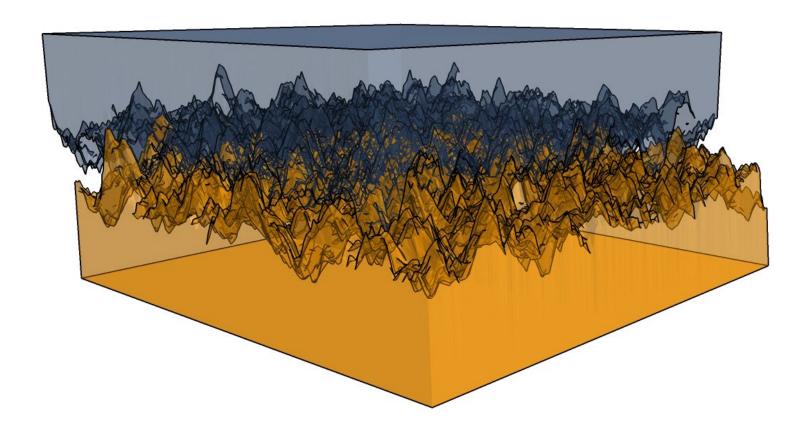
Recap


Energy and Friction

Today


• Friction

Work-energy principle:
$$W=\Delta E=E_f-E_i$$
 Work done by force $\vec{F}:W=\int_{\vec{r}_i}^{\vec{r}_f}\vec{F}\cdot d\vec{r}=\int_{t_i}^{t_f}\vec{F}\cdot \vec{v}dt$ Work done by moment M_Z : $W=\int_{\theta_i}^{\theta_f}M_Zd\theta=\int_{t_i}^{t_f}M_Z\dot{\theta}dt$


 W_F can be negative, zero or postive:

Static vs Kinetic Friction

Simulated blocks with fractal rough surfaces, exhibiting static frictional interactions

Static friction can be thought of as arising from surface roughness

Static & Kinetic Friction Coefficients

Material	Coefficient of Static Friction μ_s	Coefficient of Kinetic Friction μ_k
Rubber on Glass	2.0+	2.0
Rubber on Concrete	1.0	0.8
Steel on Steel	0.74	0.57
Wood on Wood	0.25 – 0.5	0.2
Metal on Metal	0.15	0.06
Ice on Ice	0.1	0.03
<i>Synovial</i> Joints in Humans	0.01	0.003

An empty cart is being rolled across a warehouse floor. If the cart was filled, the force of friction between the cart and the floor would

- A. Decrease
- B. Increase
- C. Remain the same

Sand is often placed on an icy road because the sand:

- A. Decreases the coefficient of friction between the tires of a car and the road
- B. Increases the coefficient of friction between the tires of a car and the road
- C. Decrease the gravitational force on a car
- D. Increases the normal force of a car on the road

Dry/Coulomb Friction (2D) - Multiple Cases

A. Slip

1. Relative motion

$$v_{Px} \neq 0 \text{ or } a_{Px} \neq 0$$

- 2. $F = \mu N$
- 3. \hat{F} opposes motion

$$(\hat{v}_P \text{ or } \hat{a}_P)$$

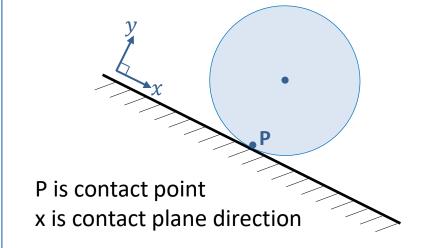
B. Stick

1. No relative motion

$$v_{Px} = 0$$
 or $a_{Px} = 0$

 $2. F \leq \mu N$

(magnitudes)

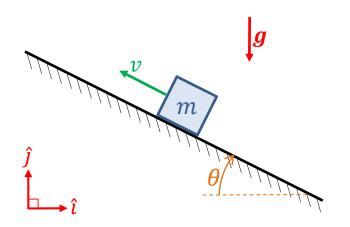

C. Transition

1. No relative motion

$$v_{Px} = 0$$
 or $a_{Px} = 0$

2. Critical friction force

$$F = \mu N$$


Solution Procedure (known case)

- Determine case (stick, transition, slip left, slip right)
- FBD, equations depending on case, solve

Solution Procedure (unknown case)

- Try stick: ① Assume $v_{Px} = 0$, $a_{Px} = 0$, $N, F \leq \mu N$
 - ② Solve for motion, N, F
 - ③ Check $|F| \le \mu |N|$
- Try slip left: ① Assume $F = \mu N$ to the right
 - 2 Solve for motion of contact point, N, F
 - ③ Check $v_{Px} \neq 0$, $a_{Px} \neq 0$ and \hat{F} opposes motion (\hat{v} or \hat{a})
- Try slip right: ① Assume $F = \mu N$ to the left
 - 23 same as slip left

A block of mass m=8 kg is sliding up a sloped ground with speed $\nu=9$ m/s. The ground is at an angle of $\theta=30^{\circ}$ from horizontal, the coefficient of friction between the block and ground is $\mu=0.25$, and gravity g=9.8 m/s² acts vertically.

What is the acceleration \vec{a} of the block?

$$\vec{a} = \underline{\qquad} \hat{\imath} + \underline{\qquad} \hat{\jmath} \text{ m/s}^2$$

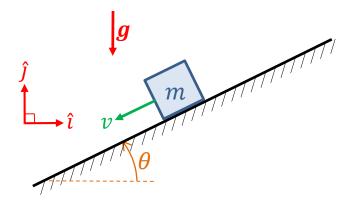
Which case?

- A. Slip
- B. Stick
- C. Transition

How many unknown variables?

- A. 1 D. 4
- B. 2 E. 5
- C. 3

What is equation (3)?

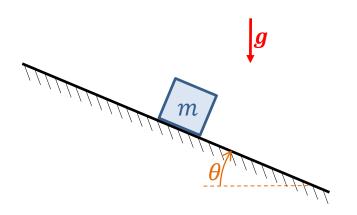

A.
$$ma_x = F + mg \sin \theta$$

B.
$$ma_x = -F + mg \sin \theta$$

$$C. \quad ma_{x} = F - mg \sin \theta$$

D.
$$ma_x = -F - mg \sin \theta$$

A block of mass m=8 kg is sliding down a sloped ground with speed $\nu=5$ m/s. The ground is at an angle of $\theta=25^{\circ}$ from horizontal, the coefficient of friction between the block and ground is $\mu=0.5$, and gravity g=9.8 m/s² acts vertically.


What is the acceleration \vec{a} of the block?

$$\vec{a} =$$
______î + ______ĵ m/s²

Given that g is down and \vec{v} is down the slope:

- A. \vec{a} must be down the slope gravity
- B. \vec{a} must be up the slope friction
- C. \vec{a} might be up or down the slope

A block of mass m=9 kg starts at rest on a sloped ground. The ground is at an angle of $\theta=25^{\circ}$ from horizontal and gravity g=9.8 m/s² acts vertically.

What is the minimum coefficient of friction so that the block will not slide?

$$\mu =$$

Which case?

- A. Slip
- B. Stick
- C. Transition

Invalid (not useful) equation?

A.
$$F = \mu N$$

B.
$$a = 0$$

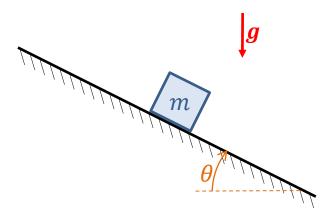
C.
$$v=0$$

D.
$$F \leq \mu N$$

E.
$$a \leq 0$$

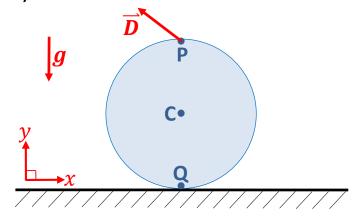
μ depends on:

A.
$$m, \theta, g$$


B.
$$m, \theta$$

C.
$$\theta$$
, g

D.
$$m, g$$


E.
$$\theta$$

A block of mass m=3 kg starts at rest on a sloped ground. The ground is at an angle of $\theta=30^{\circ}$ from horizontal, the coefficient of friction between the block and ground is $\mu=0.5$, and gravity g=9.8 m/s² acts vertically.

What type of motion does the block experience?

A uniform rigid disk of mass m=7 kg and radius r=4 m starts at rest on a flat ground as shown. Force $\overrightarrow{D}=-44\hat{\imath}+34\hat{\jmath}$ N acts at point P on the top edge, and g=9.8 m/s² acts vertically. The coefficient of friction between the block and ground is $\mu=0.25$.

What is the angular acceleration $\vec{\alpha}$ of the disk?

$$\vec{\alpha} = \underline{\qquad} \hat{k} \operatorname{rad/s^2}$$