TAM 212 - Dynamics

Wayne Chang

Summer 2019

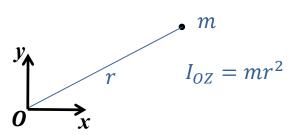
Recap

Center of Mass, Moments of Inertia

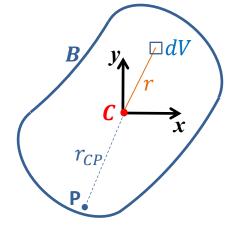
Today

Moments of Inertia, Kinetics of Rigid Bodies

Point mass

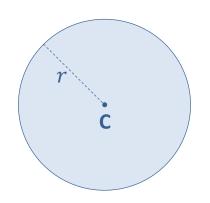


Arbitrary rigid body



$$I_{CZ} = \iiint_B \rho r^2 dV$$

Simple shapes: tables



Disk:
$$I_{CZ} = \frac{1}{2}mr^2$$

 r_{CP} = distance orthogonal to Z-axis

Parallel Axis Theorem
$$I_{PZ} = I_{CZ} + mr_{CP}^2$$
 must be from COM

$$I_{PZ}^{total} = I_{PZ}^{B_1} + I_{PZ}^{B_2}$$

Additive Theorem $I_{PZ}^{total} = I_{PZ}^{B_1} + I_{PZ}^{B_2}$ must be on the <u>same point</u>, along the <u>same axis</u>

First use Parallel Axis Theorem, then Additive Theorem

Rigid Body Kinetics

Kinematics
$$\rightarrow \vec{r}, \vec{v}, \vec{a}, \vec{\omega}, \vec{\alpha}$$
 (no forces)

Kinetics
$$\vec{F} = m\vec{a}, \vec{M} = I\vec{\alpha}$$
, forces, moments

Particle:
$$\Sigma \vec{F} = m\vec{a}$$

Rigid Body:
$$\Sigma \vec{F} = m \vec{a}_C$$

$$\Sigma M_{CZ} = I_{CZ} \alpha_Z$$

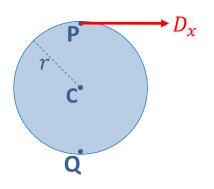
$$\Sigma M_{CZ} = I_{CZ} \alpha_Z$$

Equations of motion

$$\Sigma M_{OZ} = I_{OZ} \alpha_Z$$
 O = Fixed Point

Forces & inertia Motion
$$\vec{a}, \vec{\alpha}$$

Example



Disk starts at rest.

No gravity.

Force $D_x > 0$ applied at P

Initially

Paccelerates A. left

B. zero

C. right

C accelerates A. left

B. zero

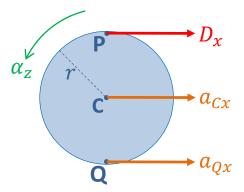
C. right

Q A. left

accelerates B. zero

C. right

Example



Disk starts at rest. No gravity. Force $D_{\chi}>0$ applied at P

$$a_{Cx} = A. \frac{2D_x}{m}$$

$$\mathbf{B.} \quad \frac{D_{\chi}}{m}$$

$$D. \quad \frac{-D_{\chi}}{m}$$

$$\mathsf{E.} \quad \frac{-2D_{x}}{m}$$

$$\alpha_z = A. \frac{2D_x}{mr}$$

B.
$$\frac{D_x}{mr}$$

$$\mathsf{D.} \quad \frac{-D_{\chi}}{mr}$$

$$\mathsf{E.} \quad \frac{-2D_{\chi}}{mr}$$

$$a_{Qx}$$
 A. $\frac{2D_3}{m}$

$$\mathsf{B.} \quad \frac{D_{\chi}}{m}$$

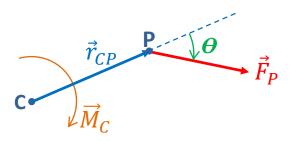
$$D. \quad \frac{-D_x}{m}$$

$$\mathsf{E.} \quad \frac{-2D_{\chi}}{m}$$

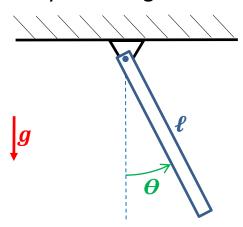
Moments

$$\vec{M}_C = \vec{r}_{CP} \times \vec{F}_P$$

 $| \overrightarrow{M}_C = \overrightarrow{r}_{CP} imes \overrightarrow{F}_P |$ moment about C due to force at P



1. System diagram

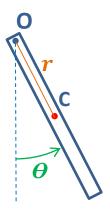


Rigid rod, length ℓ , mass m, gravity g

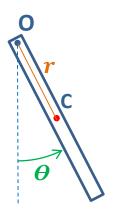
Find: angular acceleration as a function of θ , $\dot{\theta}$

2. FBDs

3. Kinematics: \vec{a}_C , $\vec{\alpha}$



3. Kinematics: \vec{a}_C , $\vec{\alpha}$



$$\alpha_Z = A. r\ddot{\theta}$$

B.
$$-r\dot{\theta}^2$$

C. Ÿ

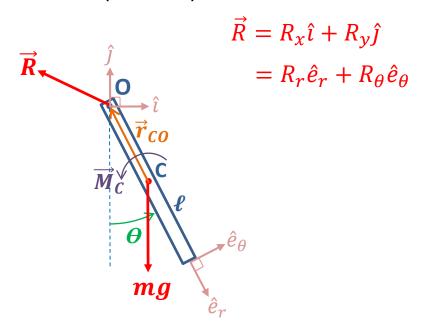
D.
$$2r\dot{\theta}^2$$

E. $\ddot{\boldsymbol{\theta}}$

Coordinates for $\vec{a}_{\mathcal{C}}$?

- A. Cartesian
- B. Polar

4. Kinetics (Newton):



$$M_{CZ} = A. \frac{\ell}{2} R_r$$

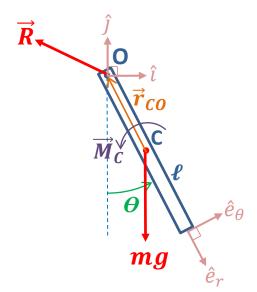
B.
$$\frac{\ell}{2}R_{\theta}$$

$$\mathsf{C.} \quad -\frac{\ell}{2}R_n$$

D.
$$-\frac{\ell}{2}R_{\theta}$$

4. Kinetics (Newton):

$$\vec{R} = R_r \hat{e}_r + R_\theta \hat{e}_\theta \qquad \vec{a} = (\ddot{r} - r\dot{\theta}^2)\hat{e}_r + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\hat{e}_\theta$$



$$\Sigma \vec{F} = m\vec{a}_C \Rightarrow \vec{R} - mg\hat{\jmath} = -m\frac{\ell}{2}\dot{\theta}^2\hat{e}_r + m\frac{\ell}{2}\ddot{\theta}\hat{e}_\theta \qquad \boxed{1}$$

$$\Sigma M_{CZ} = I_{CZ}\alpha_{Z} \qquad I_{CZ} = \frac{1}{12}m\ell^{2}$$

$$\vec{M}_{C} = \vec{r}_{CO} \times \vec{R} = \left(-\frac{\ell}{2}\hat{e}_{r}\right) \times (R_{r}\hat{e}_{r} + R_{\theta}\hat{e}_{\theta}) = -\frac{\ell}{2}R_{\theta}\hat{k}$$

$$M_{CZ} = I_{CZ}\alpha_{Z} \Rightarrow -\frac{\ell}{2}R_{\theta} = \frac{1}{12}m\ell^{2}\ddot{\theta}$$
(2)

5. Algebra

(1)
$$\theta$$
-direction $\Rightarrow R_{\theta} - mg \sin \theta = m \frac{\ell}{2} \ddot{\theta}$ (3)

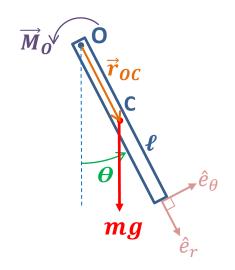
$$2) \Rightarrow -\ell R_{\theta} = \frac{1}{6} m \ell^2 \ddot{\theta}$$
 4

$$\ell = -mg\ell \sin \theta = \frac{2}{3}m\ell^2\ddot{\theta}$$

$$\ddot{\theta} = -\frac{3}{2} \frac{g}{\ell} \sin \theta$$
 Solve this numerically

Example: Rigid-rod Pendulum Alternative solution using fixed-point O

4. Kinetics (Newton):
$$\vec{a} = (\ddot{r} - r\dot{\theta}^2)\hat{e}_r + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\hat{e}_\theta$$



$$\Sigma M_{OZ} = I_{OZ}\alpha_Z \qquad I_{OZ} = \frac{1}{3}m\ell^2$$

$$\vec{M}_O = \vec{r}_{OC} \times \vec{F}_g = \left(\frac{\ell}{2}\hat{e}_r\right) \times (mg\cos\theta \,\hat{e}_r - mg\sin\theta \,\hat{e}_\theta)$$

$$\vec{M}_O = -mg\frac{\ell}{2}\sin\theta \,\hat{k}$$

$$M_{OZ} = I_{OZ}\alpha_Z \Rightarrow -mg\frac{\ell}{2}\sin\theta = \frac{1}{3}m\ell^2\ddot{\theta}$$

$$\ddot{\theta} = -\frac{3}{2} \frac{g}{\ell} \sin \theta$$

Instantaneous Centers (IC)

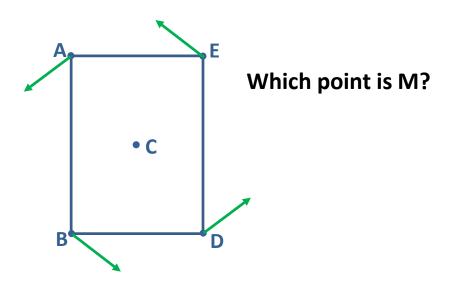
Rigid body moving in 2D.

Rotating and possible translating

Instantaneous Centers (IC)

Rigid body moving in 2D.

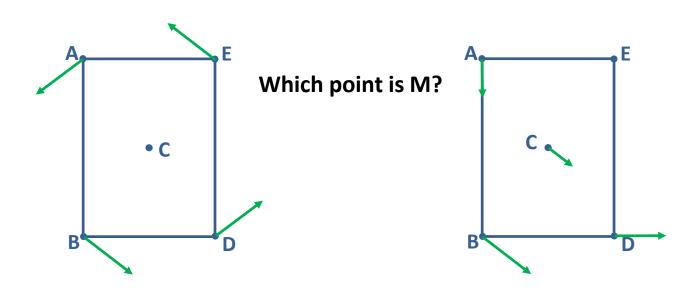
Rotating and possible translating



Instantaneous Centers (IC)

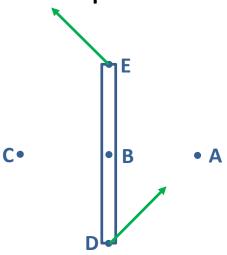
Rigid body moving in 2D.

Rotating and possible translating

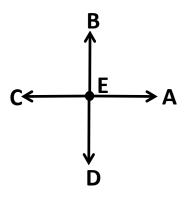


IC Examples

Which point is M?

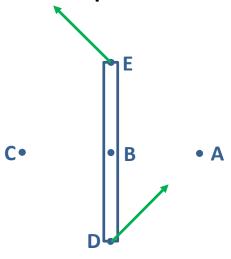


Direction of \overrightarrow{v}_B ?



IC Examples

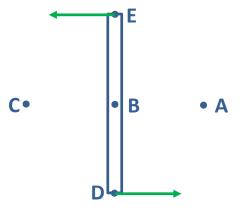
Which point is M?



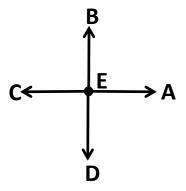
Direction of \overrightarrow{v}_B ?



Which point is M?

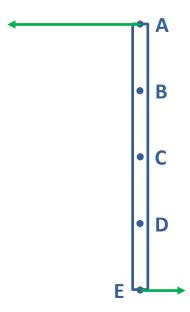


Direction of \vec{v}_B ?



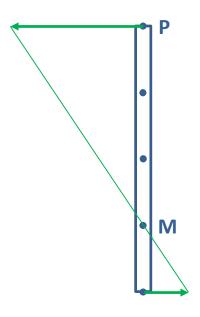
IC Examples

Which point is M?



Intuition for IC

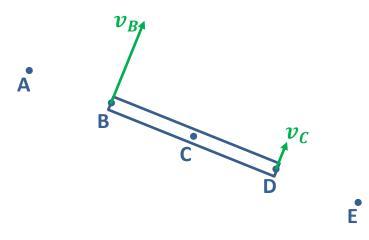
From M, \vec{v}_P is orthogonal to \vec{r}_{MP} (why?)



 $v_P = \omega r_{MP}$ speed proportional to distance from M

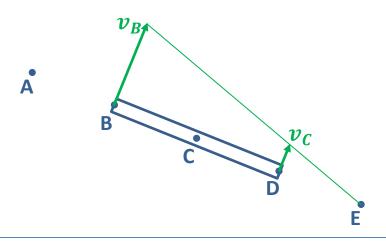
More IC Examples

Which point is M?

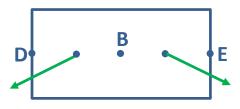


More IC Examples

Which point is M?



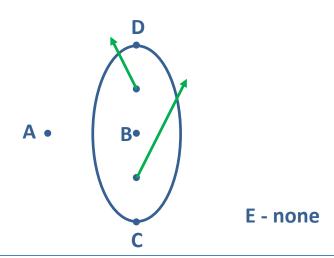
Which point is M?



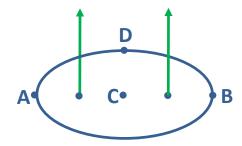
A

Even More IC Examples

Which point is M?



Which point is M?



Graphical Rules for Finding M (the IC)

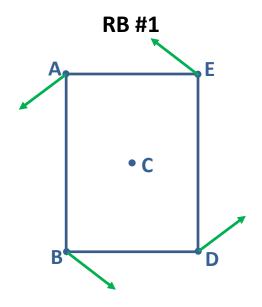
Draw lines perpendicular to velocities

- If the lines intersect at a single point
 - \Rightarrow that point is M
- If the lines are the same lines
 - ⇒ Draw a line through the velocity tips
 - If the lines intersect at a single point
 - \Rightarrow that point is M

Careful!

- Consistent direction of rotation
- Consistent speeds $v = \omega r$
- Body may not be rotating (pure translation)

Example



RB #2

Which body is translating?

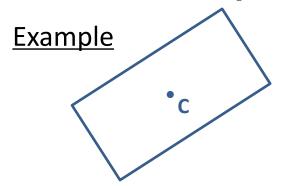
- A. RB#1
- B. RB #2
- C. both
- D. neither
- E. can't tell

Some Key Points

- Rotation is a property of the body as a whole
- Translation really isn't such a property (unless we have pure translation)
- We can talk about translation of specific points, like center C

Calculating the Position of M

Key property: M is the point with $\vec{v}_M = 0$ at that instant OR \vec{v}_P is in pure rotation about M.

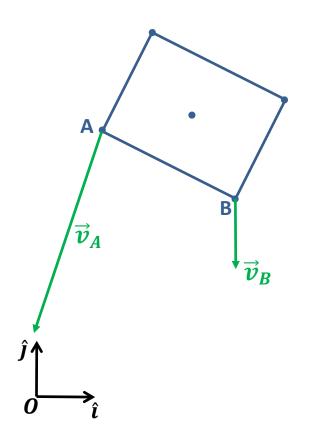


$$\vec{v}_C = (4, 2) \text{m/s}$$

$$\vec{\omega} = -2 \text{ rad/s}$$

Where is M relative to C?

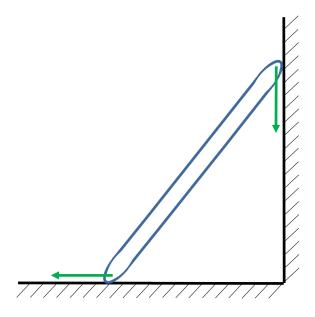
Example



$$\vec{r}_A = (1, 4) \text{m}$$
 $\vec{v}_A = (-3, -9) \text{m/s}$
 $\vec{r}_B = (3, 3) \text{m}$ $\vec{v}_B = (0, -3) \text{m/s}$

Where is M?

Example



The Ladder is sliding down the wall.