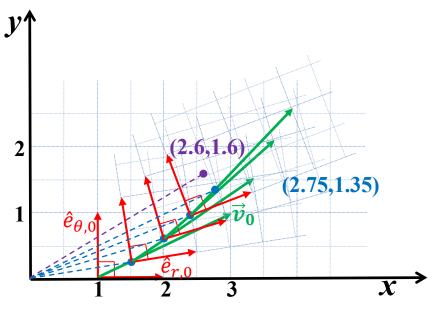
TAM 212 - Dynamics

Wayne Chang


Summer 2019

Recap

- Polar coordination Integrating
- Acceleration terms centripetal acceleration
- Angular velocity

Today

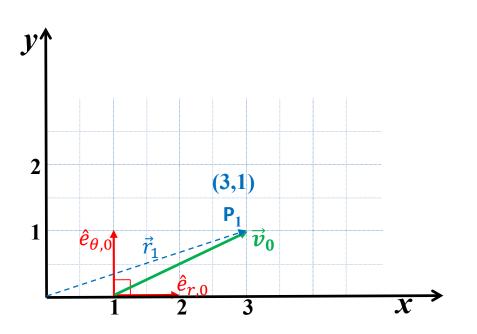
Angular velocity and acceleration

Cartesian: $\vec{v} = \dot{x}\hat{\imath} + \dot{y}\hat{\jmath}$

integrate to find x(t) and y(t)

Polar: $\vec{v} = \dot{r}\hat{e}_r + r\dot{\theta}\hat{e}_{\theta}$

reduce to $\dot{r}(t)$ and $\dot{\theta}(t)$ before integrating


Base idea: turn vector integrals into scalar

integrals in coordinates

Example – Polar coordination integrating

A particle P starts at time t=0 s, it is at $\vec{r}=\hat{\imath}$ m and always has a velocity $\vec{v}=2\hat{e}_r+\hat{e}_\theta$ m/s.

Where is P at t = 1 s?

$$\vec{r}(1) = A. 3\hat{i} m$$

B.
$$-3\hat{i}$$
 m

C.
$$3\hat{i} + \hat{j}$$
 m

D.
$$3\hat{i} - \hat{j}$$
 m

E. none of the above

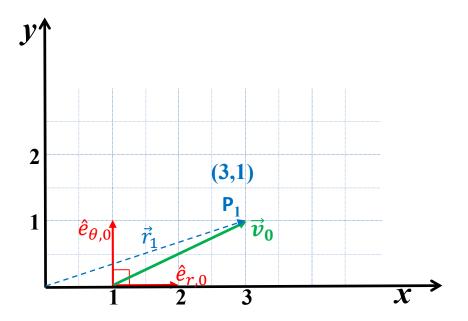
$$(1,0) + (2,1) = (3,1)$$
 incorrect!

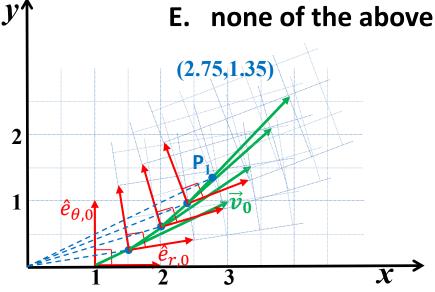
$$v = \dot{x} = \frac{x(t+dt) - x(t)}{dt}$$

$$x(t + \Delta t) \approx x(t) + v\Delta t$$

Example – Polar coordination integrating

A particle P starts at time t=0 s, it is at $\vec{r}=\hat{\imath}$ m and always has a velocity $\vec{v}=2\hat{e}_r+\hat{e}_\theta$ m/s.


Where is P at t = 1 s?


$$\vec{r}(1) = A. 3\hat{\imath} m$$

B.
$$-3\hat{i}$$
 m

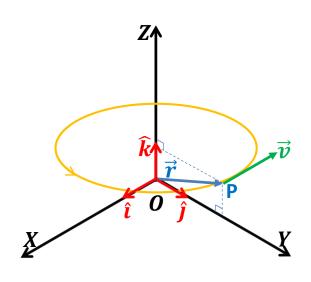
C.
$$3\hat{i} + \hat{j}$$
 m

D.
$$3\hat{i} - \hat{j}$$
 m

Example – Polar coordination integrating

A particle P starts at time t=0 s, it is at $\vec{r}=\hat{\imath}$ m and always has a velocity $\vec{v}=2\hat{e}_r+\hat{e}_\theta$ m/s. Where is P at t=1 s?

Actual computation:


$$\vec{v} = 2\hat{e}_r + \hat{e}_\theta$$

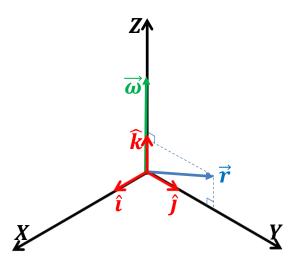
$$\vec{v} = \dot{r}\hat{e}_r + r\dot{\theta}\hat{e}_\theta$$

$$x + \dot{r}\hat{\theta}\hat{e}_\theta$$
At $t = 0$: $\vec{r}(0) = \hat{i}$

$$x + \dot{r}\hat{\theta}\hat{e}_{0,0}$$

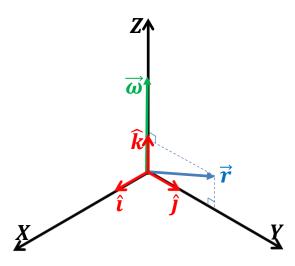
Angular velocity for particles (rotating about axis through origin)

 $\omega = \text{speed of rotation}$


 $\widehat{\omega} = \text{axis of rotation}$

 $\vec{\omega} = \omega \hat{\omega} = \text{ angular velocity}$

Ex. $\vec{\omega} = \omega \hat{k}$. What is \vec{v} of **P**?

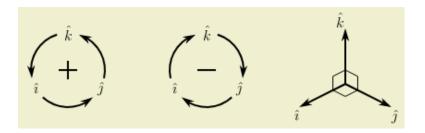

Example

$$\vec{r} = 4\hat{\jmath} + 3\hat{k} \text{ m}$$

 $\vec{\omega} = 3\hat{k} \text{ rad/s}$

Example

$$\vec{r}=4\hat{\jmath}+3\hat{k}$$
 m $\vec{\omega}=3\hat{k}$ rad/s


What is \overrightarrow{v} ?

Angular acceleration

 $\vec{\alpha} = \dot{\vec{\omega}} = \text{angular acceleration} - \text{time derivative of angular velocity}$

$$\vec{v} = \vec{\omega} \times \vec{r} = \dot{\vec{r}}$$

$$\vec{a} = \dot{\vec{v}}$$

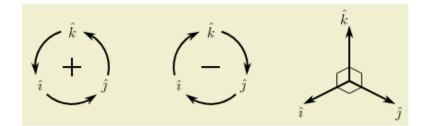
Angular acceleration

 $\vec{\alpha} = \dot{\vec{\omega}} = \text{angular acceleration} - \text{time derivative of angular velocity}$

$$\vec{v} = \vec{\omega} \times \vec{r} = \dot{\vec{r}}$$

$$\vec{a} = \dot{\vec{v}} = \frac{d}{dt} \vec{v} = \frac{d}{dt} (\vec{\omega} \times \vec{r})$$

$$= \dot{\vec{\omega}} \times \vec{r} + \vec{\omega} \times \dot{\vec{r}}$$
 Important!
$$\vec{a} = \vec{\alpha} \times \vec{r} + \vec{\omega} \times (\vec{\omega} \times \vec{r})$$
 Order matters in cross product


Exmaple
$$\vec{\alpha} = 0$$
, $\vec{\omega} = \vec{k}$, $\vec{r} = \vec{i}$

$$\vec{a} = 0 + \vec{k} \times \vec{k} \times \vec{i} = 0 + 0$$

$$\vec{a} = 0 + \vec{k} \times (\vec{k} \times \vec{i})$$

$$= \vec{k} \times (\vec{j})$$

$$= -\vec{i}$$

Example

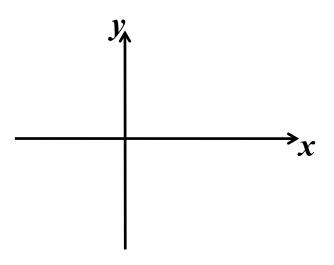
For 2D x-y plane:
$$\vec{v} = \vec{\omega} \times \vec{r} = \omega_z \vec{r}^\perp$$

$$\vec{a} = \vec{\alpha} \times \vec{r} + \vec{\omega} \times (\vec{\omega} \times \vec{r}) = \alpha_z \vec{r}^\perp - \omega_z^2 \vec{r}$$

A particle at position \vec{r} is rotating about the z-axis with $\dot{\theta}=3$ rad/s and $\ddot{\theta}=2$ rad/s². What are $\vec{\omega}$ and $\vec{\alpha}$?

Example - Solving vector equations

A particle in the x-y plane is rotating about the origin with an angular velocity $\vec{\omega} = -2\hat{k}$ rad/s. The particle has a velocity $\vec{v} = 12\hat{\iota} - 2\hat{\jmath}$ m/s. What is the position vector \vec{r} of the particle?


$$r_{x} = A. -2 m$$

B. -1 m

C. 0 m

D. 1 m

E. 2 m

