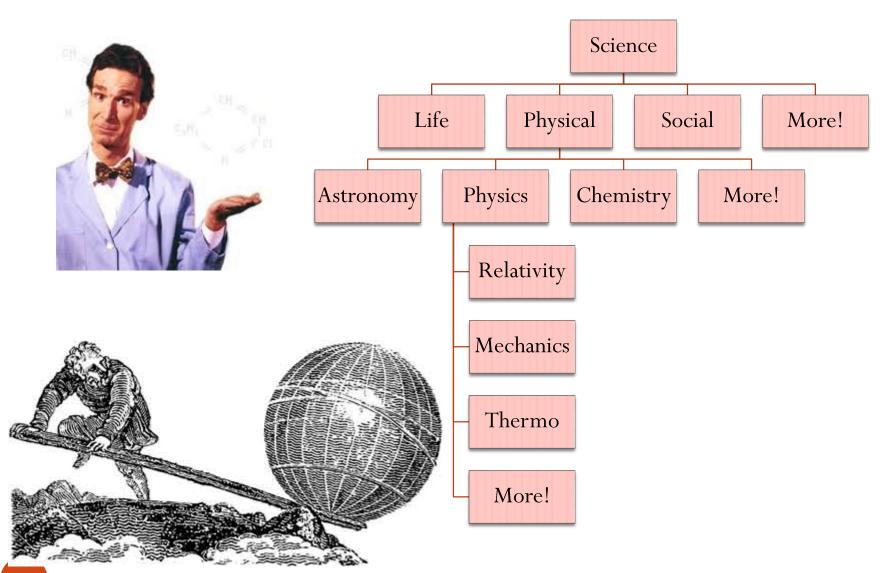
Announcements


- ☐ Got i-Clicker?
- ☐ Practice PrairieLearn Homework and Quiz now live
- ☐ MATLAB clinic starts tonight, check Piazza post for details
- ☐ Remember to go through the course website
 - □Office hours are posted (Schedule)
- □ Recommended reading: Hibbeler chapters 1-2
- ☐ Upcoming deadlines:
- Tuesday (1/22)
 - PrairieLearn HW1
- Friday (1/25)
 - Written Assignment 1

Lecture Objectives

- ☐ What is "statics"?
- ☐ Newton's laws of motion
- Newton's law of gravitational attraction
- ☐ Force vectors and vector operations

Chapter 1: General Principles

What is "statics"?

Mechanics

Mechanics is a branch of the physical sciences that is concerned with the state of rest or motion of bodies that are subjected to the action of forces

Rigid Bodies

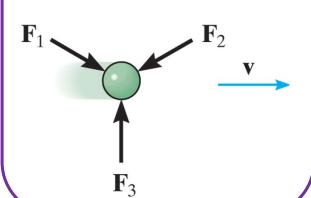
Statics

Dynamics

Deformable Bodies

Solid Mechanics

Fluids

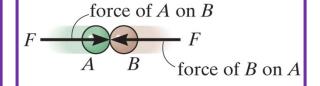


Compressible and incompressible

Newton's laws of motion

First law:

Particle at rest (or moving in a straight line with constant velocity) stays that way unless another force comes in.


Second law: a particle acted upon by an unbalanced force **F** experiences an acceleration **a** that is proportional to the particle mass *m*:

F = ma

Third law: the mutual forces of action and reaction between two particles are equal ______,

opposite and collinear .

victorstuff.com

Which forces?

state of rest or motion of bodies that are subjected to the action of forces

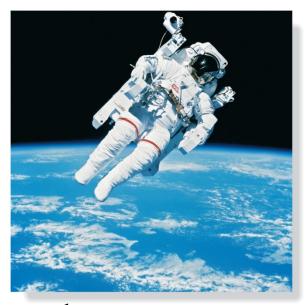
www.ashvegas.com

Newton's law of gravitational attraction

The mutual force **F** of gravitation between two particles of mass m_1 and m_2 is given by:

$$F = G \frac{m_1 m_2}{r^2}$$

G is the universal constant of gravitation (small number) r is the distance between the two particles


Weight is the force exerted by the earth on a particle at the earth's surface:

$$F = mg, g = G \frac{M_e}{r_e^2}$$

 M_e is the mass of the earth

 r_e is the distance between the earth's center and the particle near the The astronaut's weight is diminished, since she is far removed from the gravitational field of the earth.

g is the acceleration due to the gravity

L2 - Gen Principles & Force Vectors

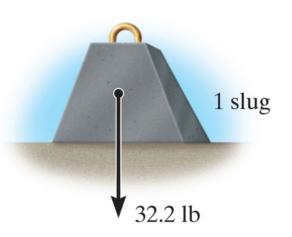
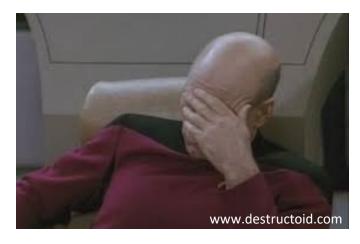
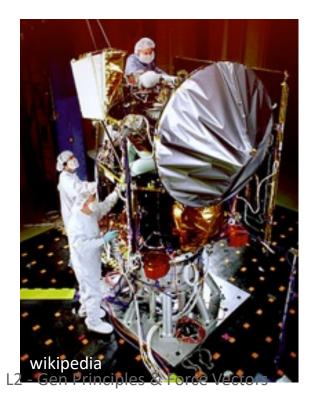

Units

TABLE 1-1 Systems of Units Time Name Length Mass Force International kilogram newton* meter second System of Units SI kg m S U.S. Customary slug* foot second pound **FPS** ft lb S

*Derived unit.

Copyright ©2013 Pearson Education, publishing as Prentice Hall


$$G = 66.73 \times 10^{-12} \frac{m^3}{kg \cdot s^2}$$


$$g = 9.81 \frac{m}{s^2}$$

$$g = 32.2 \frac{ft}{s^2}$$

Why so picky? Units matter...

- A national power company mixed up prices quoted in kilo-Watt-hour (kWh) and therms.
 - Actual price: \$50,000
 - Paid while trading on the market: \$800,000
- In Canada, a plane ran out of fuel because the pilot mistook liters for gallons!. He landed the plane safely without power on an emergency airstrip.

Mars climate orbiter -- \$327.6 million

Numerical Calculations

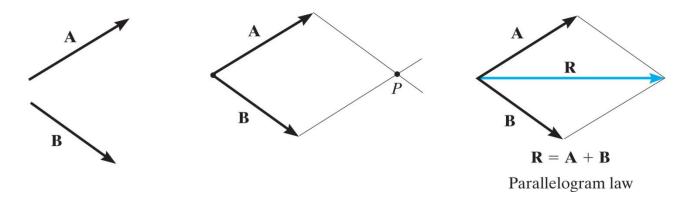
Significant figures

The number of significant figures contained in any number determines the accuracy of the number. Use 3 or > significant figures for final answers. For intermediate steps, use symbolic notation, store numbers in calculators or use more significant figures, in order to maintain precision.

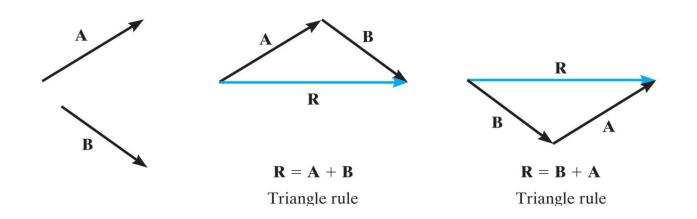
Force vectors

A force—the action of one body on another—can be treated as a vector, since forces obey all the rules that vectors do.

Scalars and vectors


	Scalar	Vector
Examples	Mass, Volume, Time	Force, Velocity
Characteristics	It has a magnitude	It has a magnitude and direction
Special notation used in TAM 210/211	None	Bold font or symbols ("→") Ex:

Multiplication or division of a vector by a scalar


$$\boldsymbol{B} = \alpha \, \boldsymbol{A}$$

Vector addition

All vector quantities obey the parallelogram law of addition $\ m{R}=m{A}+m{B}$

Commutative law: $oldsymbol{R} = oldsymbol{A} + oldsymbol{B} = oldsymbol{B} + oldsymbol{A}$

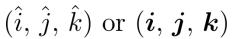
Associative law: $oldsymbol{A} + (oldsymbol{B} + oldsymbol{C}) = (oldsymbol{A} + oldsymbol{B}) + oldsymbol{C}$

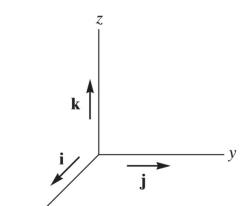
Vector subtraction:

$$R = A - B = A + (-B)$$

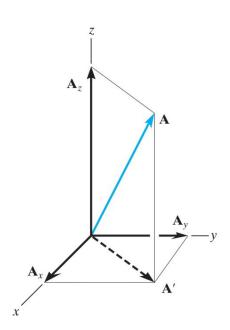
 $(-oldsymbol{B})$ has the same magnitude as $oldsymbol{B}$ but is in opposite direction.

Scalar/Vector multiplication:

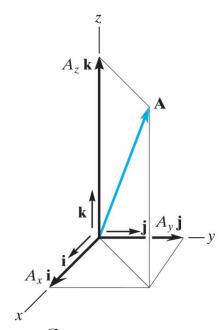

$$\alpha(\mathbf{A} + \mathbf{B}) = \alpha \mathbf{A} + \alpha \mathbf{B}$$


$$(\alpha + \beta)\mathbf{A} = \alpha \mathbf{A} + \beta \mathbf{A}$$

Cartesian vectors


Rectangular coordinate system: formed by 3 mutually perpendicular axes, the x, y, z axes, with unit vectors \hat{i} , \hat{j} , \hat{k} in these directions.

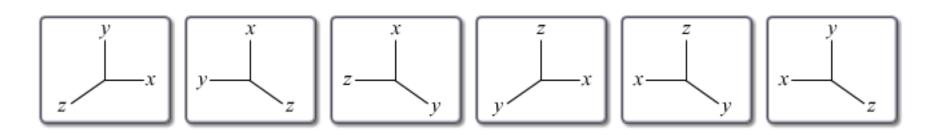
Note that we use the special notation "^" to identify *basis vectors* (instead of the "→" notation)



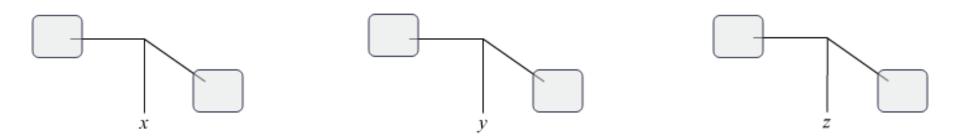
Right-handed coordinate system

Rectangular components of a vector

$$\boldsymbol{A} = \boldsymbol{A}_x + \boldsymbol{A}_y + \boldsymbol{A}_z$$



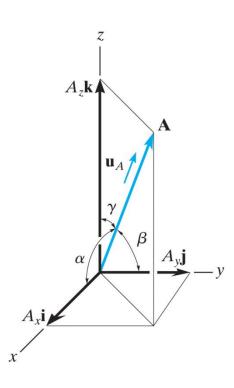
Cartesian vector representation


$$\mathbf{A} = \mathbf{A}_x + \mathbf{A}_y + \mathbf{A}_z$$
 $\mathbf{A} = A_x \mathbf{i} + A_y \mathbf{j} + A_z \mathbf{k}$

Right-hand Rule

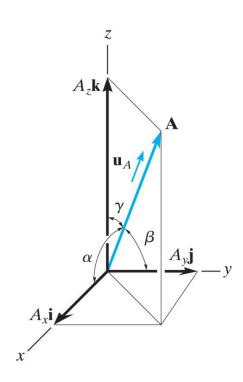
Sort the following coordinate systems into Cartesian and non-Cartesian.




Label the missing coordinate axes in Cartesian coordinate system.

Magnitude of Cartesian vectors

$$A = |\mathbf{A}| = \sqrt{A_x^2 + A_y^2 + A_z^2}$$



Direction of Cartesian vectors

Expressing the direction using a unit vector:

$$egin{array}{lll} oldsymbol{u}_A & = & rac{oldsymbol{A}}{A} \ & = & rac{A_x}{A} \, oldsymbol{i} + rac{A_y}{A} \, oldsymbol{j} + rac{A_z}{A} \, oldsymbol{k} \end{array}$$

Direction cosines are the components of the unit vector:

$$\cos(\alpha) = \frac{A_x}{A}$$
$$\cos(\beta) = \frac{A_y}{A}$$
$$\cos(\gamma) = \frac{A_z}{A}$$

Addition of Cartesian vectors

$$\mathbf{R} = \mathbf{A} + \mathbf{B} = (A_x + B_x) \mathbf{i} + (A_y + B_y) \mathbf{j} + (A_z + B_z) \mathbf{k}$$