MATLAB CHEATSHEET

When you open Matlab you will see the following (note that the windows within Matlab may be arranged slightly differently)

Calculations can be done either in the "Command window" or the "Editor". The command window is a temporary place to see your commands, the commands themselves are saved in the "Command history", but not the answers. The solution to the calculation is displayed in the "Command Window" and stored in the "Workspace". If you do not assign a variable name to the calculation, the answer is stored in the default variable name "ans" .

For example, if we want to add $3+5$, we can type: $3+5$ in the Command Window.

	Command History
Command Window	- ${ }^{\text {clear b }}$
>> clear all	$\left[\begin{array}{c}\text { clear } \\ \text { clear }\end{array}\right.$
>> $3+5$	for $x=1: 5$
ans =	$[b(x), p(x)]=$ ttest2(c...
	-end
8	b
	p
$f x \gg$	processeffStrainSEDall...
	\%-- 1/15/16, 9:47 AM --\%
	clc
	clear all
	$3+5$

Now we can assign a variable to the answer:

Note that at this point, the answer is a variable of size (m, n) where m is the number of rows, and n is the number of columns. For this example, A is a 1 x 1 array.

Often, you will be adding vectors - your variable would then be a 1 x 2 vector array (for 2-D problems) or a 1 x 3 array (for 3-D problems).

General guidelines

- Create your vectors as variables (e.g. $\left.\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right] ; \mathrm{B}=\left[\begin{array}{lll}3 & 4 & 5\end{array}\right]\right)$
- Perform secondary calculations using these variables and save this as another variable (e.g. $\mathrm{C}=\mathrm{A}+\mathrm{B})$
- DO NOT round intermediate calculations
- Give your variables meaningful names (e.g. force1, F1, moment1, fAB for a force going from A to B)

Helpful Matlab commands

- add $=+$
- subtraction $=-$
- multiplication $=+$
- division $=/$
- $\operatorname{det}(\mathrm{D}):$ determinant of a square matrix
- $\operatorname{dot}(A, B):$ dot product of two vectors
- $\operatorname{cross}(A, B):$ cross product of two vectors
- norm(A): Magnitude of a vector
- $\cos (\mathrm{x}) \operatorname{acos}(\mathrm{x})$
- $\sin (x) \operatorname{asin}(x)$
- $\tan (\mathrm{x}) \operatorname{atan}(\mathrm{x})$
- $\cot (\mathrm{x}) \operatorname{acot}(\mathrm{x})$
- $\csc (\mathrm{x}) \operatorname{acsc}(\mathrm{x})$
- $\sec (x) \operatorname{asec}(x)$
- $\operatorname{atan} 2(\mathrm{x}, \mathrm{y})$

Careful!!! Matlab defaults to radians, so if you want to use degrees you have 2 options:

- Cosd $=$ cosine(in degrees)

OR
To convert from radians to degrees

- rad2deg (deg2rad also exists)
- Do the math itself
- pi is predefined in Matlab as ?pi?

