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• Brief history  

• Open questions and current status 

• Future prospects and speculations 
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Ancient History 

• ~1900 : Electroscopes were found to discharge 
even when they were heavily shielded. 

• ~1910 : Wulf found the ionization fell from        
6 x 106 ions/m-3 to 3.5 x 106 ions/m-3 as he 
ascended the Eiffel Tower (330m). This 
suggested a terrestrial origin of the ionization. 

• ~1912-1914 : V. Hess and W. Kolhorster  
measured the ionization in open balloons 
ascending to height of 5 km and 9 km, 
respectively. 
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Ancient History 

• The ionization was found to have extra-terrestrial origin. 
• Bitter debates regarding the nature of the ionization 

– Millikan: cosmic rays are gamma rays 
– Compton: cosmic rays are charged particles 

Victor Hess returning from a balloon flight 
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Observation of air shower 

• Coincidence rates 
between two counters 
separated at a distance 
up to 300 meters 

• The energies of the 
cosmic rays were 
estimated to be ~ 1015 ev. 
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Isotope composition of the cosmic rays 

• Abundance of Li, Be, B 
in cosmic rays. Why? 

• Deficiency of H and He 
in cosmic rays relative 
to solar system. Why?  

 

 
• Cosmic rays interact 

with interstellar gas. 
• Observed isotope 

composition is the 
result of spallation.  
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Implication on the age of the cosmic rays 

• Energetic cosmic rays in our 
galaxy can escape to other 
galaxies. 

• Energetic cosmic rays from other 
galaxies can reach our galaxy.  

 
 

• ~ 5g/cm2 of mass traversed by the cosmic rays. 
•  Average density for interstellar gas is 1 atom/cm3  ~ 3 

x 106 years as the lifetime of cosmic rays.  
• 10Be as a “cosmic ray clock”. Half-life of 10Be is 3.9 x 

106 years. 
• 10Be / (7Be + 9Be + 10Be) = 0.028 implies “escape time” 

for cosmic ray ~ 107 years.  
 

 “Leaky Box” model 
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Composition and energy spectrum 
of the cosmic rays 

E -2.67 
• Direct measurements with balloons or 

satellites 
• “Low energy” part of the spectrum 

consists of  proton (~87%), He (12%), 
Z>2 nuclei (~1%). 

• Energy density: 
– Cosmic rays: ~ 1 ev/cm3 

– Star light: ~0.3 ev/cm3 

– Interstellar B field: ~0.2 ev/cm3 

– Cosmic microwave background: 
~0.3 ev/cm3 
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Ultra high energy cosmic rays 

• Composition of the 
UHECR?  
– Proton, nucleus, gamma, 

neutron, exotics? 
– 1018 eV neutron travels a 

distance of 3 x 104 light years 
• Sources of UHECR 

(Galactic, extra-galactic, 
AGN, GRB, …)? 

• Mechanisms for producing 
UHECR? 

• Origins of the “Knee”, 
“Ankle”, and the existence 
of the “GZK cut-off”? 

 Flux ~ 1/cm2/sec at 100 MeV 

        ~ 1/km2/century at 1020 eV 
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The GZK cut-off (suppression) 
(Greisen, Zatsepin, Kuzmin) 
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The GZK suppression or enhancement? 
• From Cronin’s APS Centennial review 

paper in 1999. 
• Energy is rescaled: Yakutsk (reduce by 

20%), Fly’s Eye (raised by 10%), 
AGASA (reduced by 10%). 

• The absence of GZK suppression 
suggested relatively close sources for the 
UHECRs. 

• Clustering of sources (two pairs and one 
triplets)? Signs of anisotropy? 

• 4 σ excess at the galactic center (from 
AGASA for events with E>1018ev) 
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UHECR Detection – Ground Arrays 
• Hadronic shower contains 

EM showers. 
• Muon content is very low 

for EM showers. 
• Shower is only ~1-2 

meters thick. Therefore, 
the arrival time and the 
direction can be well 
determined. 

Hadronic shower  
EM shower 

Shadowing 
from moon 

Angular resolution ~ 0.35° 
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UHECR Detection – Ground Arrays 
• 5 ground arrays were in operation 

during 40 years of measurements 
for UHECR detection. 
– Volcano Ranch, USA (1959-

1963) 
– SUGRA, Australia (1968-1979) 
– Haverah Park, UK (1968-1987) 
– Yakutsk, Russia (1970-today) 
– AGASA, Japan (1990-2004)  

 

 

Volcano 
Ranch 

AGASA 
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UHECR Detection – Florescence telescope 
 Fly’s Eye 

HiRes 

• Fly’s Eye (1981-1992) 
• HiRes-I (5/1997-6/2005) 
• HiRes-II (12/1999-8/2004) 

   

• Optical photons in the range of 300 – 
400 nm are produced by charged 
particles passing through the nitrogen 
of the atmosphere. 

• An array of PMTs, each focused on a 
part of the sky, the shower 
development can be directly 
measured. 

• The energy dissipation of the shower 
is directly measured. 

• Limited to dark moonless nights.   
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UHECR Detection – Florescence telescope 
 

• Shower depth could be used to distinguish proton 
from nucleus, since shower depth ~ log(E/A).   
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Latest UHECR results from HiRes 
CIPANP2006 Talk by J. Mathews 

A “Dip” and a “Cut-off”? 
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 HiRes data versus GZK cut-off calculation 
HiRes data       GZK calculation      

PRD 74 (2006) 043005 
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 Are various UHECR data consistent?  

      PRD 74 (2006) 043005 

Published Data Energy Rescaled Data 
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M. Prouza, Columbia - Auger Results     15/35 

 The Pierre Auger Observatory = 
hybrid detector of cosmic rays 

• The array  of surface 
Cherenkov detectors 
will be accompanied 
with system of 
fluorescence 
telescopes, which will 
observe faint 
UV/visible light during 
clear nights. This 
fluorescence light 
origins as by-product 
during the interactions 
of shower particles 
with atmosphere. 

Scheme of hybrid detector function 
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Can one detect the relic neutrinos using UHECR? 

• Are there UHECR reactions sensitive to the CMB neutrino

• The GZK Dipand Cut-off could be viewed
as evidence for th
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Prospects for Observing 
Cosmic Neutrino Background 

• Properties of the cosmic neutrino 
background (relic neutrinos) 

• Brief review of previous proposed ideas for 
detection 

• Recent development 
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Expected properties of the (yet unobserved) 
cosmic neutrino background (CNB) versus the 

cosmic microwave background (CMB) 

• CNB took a snapshot of the Universe at a much earlier epoch than 
CMB nν  

• Since Δm21
2 = (8.0±0.3) x 10-5 ev2, and |Δm32

2| = (1.9 →3.0) x 10-3 
ev2, at least two of the three neutrinos have masses higher than 10-2 
ev, and these two types of CNB are non-relativistic (β<<1) 

CMB CNB Relation 

Temperature 2.73K 1.9 K               
(1.7 x 10-4 ev) 

Tν/Tγ = (4/11)1/3 

=0.714 
Decouple time 3.8 x 105 years ~ 1 sec 

Density ~ 411 / cm3   ~ 56 / cm3  (per 
flavor, nν = nν-bar ) 

 

nν = (3/22) nγ 
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Non-standard cosmic neutrino background 
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Incomplete list of proposed searches for CNB 
1) Coherent ν-nucleus scattering (effect of order GF

2) 
(Zeldovich and Khlpov, 1981; Smith and Lewin, 1983; Duda, Gelmini, Nussinov, 2001) 
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2) “Neutrino Optics” (effect linear in GF) 
(R. Opher, 1974; R. Lewis, 1980) 
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3) Torque exerted on a polarized target (effect 
linear in GF) 

(Stodolsky, 1974) 

For a polarized target (magnetized iron),
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5) Capture of CNB on radioactive nuclei  
A very old idea: S. Weinberg, 1962 
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5) Capture of CNB on radioactive nuclei  (continued) 

3 3
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5) Capture of CNB on radioactive nuclei  (continued) 

To check the feasibility of separating the CNB capture peak 
from the end-point, one need to conside
 Neutrino masses
 Experimental energy resolution  
 Any local clustering of CNB due to grav  

r

ity?
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5) Capture of CNB on radioactive nuclei  (continued) 
( )=1ev (mass degeneracy of three neutrinos)

=
 Neutrino masses: 
 Experimental energy resolution : 
 Any local clustering of CNB due to gravity? 
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5) Capture of CNB on radioactive nuclei  (continued) 
( )=0 ev (for the lightest neutrino, assuming inverted

   mass hierarchy, the other two massive neutrinos are nearly degen
 Neutrino masses: 
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erate)

=0.03 (ion 0.0 : 
 

6) ev

M ν•

•
•

∆
/Any local clustering of CNB due to gravity? 

 Size of the tritium s
1

100 gour ra sce: m
n nν ν<

•

>=

M. Blennow, Phys. Rev. D 77 (2008) 113014 



 

38 



39 

 



40 

 



41 

 



42 

Summary 
• Observation of Cosmic Neutrino Background 

would have tremendous impact on our 
knowledge of Universe at the very early stage. 

• It would also have important impact on our 
knowledge on neutrino physics (mass hierarchy, 
Dirac versus Majorana), as well as developing 
techniques to detect very low energy neutrinos 
from other sources (solar, supernova, geo, 
reactor…). 

• Many interesting ideas have been proposed in 
the past. None of them proved to be viable. 

• The recent proposal of “capture on radioactive 
nuclei” seems promising. More study is required.  

• It remains a great challenge to come up with new 
idea for observing the CNB. 
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