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Chapter 2 
 

Weak Interaction involving neutrinos 
 
There are numerous examples of weak interactions and weak decays.  They can be 
characterized as proceeding via neutral current (NC), charged current (CC), or 
charged current plus neutral current (NC + CC).  Also, they can be classified 
according to whether they are purely leptonic, semi-leptonic, or non-leptonic.  An 
incomplete list follows: 
 
  Charged Current   Neutral Current   Charged/Neutral 
 
 Leptonic    eµ νν→     e eµ µν ν→     e ee eν ν→  
  τ νν→      e e+ − + −→       e ee e ν ν+ − →  
  e eµν µν→  
 
 Semi-leptonic    π→μν    νN → νN 
  D K ν→      e eD n pν ν+ → + +  
  n pe ν−→  
  N xµν µ−→  
 
 Non-leptonic    K → ππ    pp → pp    pn → pn 
  D → Kπ  
  Λ → pπ- 
In purely leptonic processes, only leptons appear in the interactions or decays.  For 
semi-leptonic processes, both hadrons and leptons participate.  In non-leptonic 
processes, only hadrons appear. 
 
 
Pure Leptonic Weak Interaction 
 
We consider the following reaction: 
 
 νee- → e-νe 
 
This reaction can proceed via charged current as well as neutral current 
 
 νe      e-     νe      e- 
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  K    p′       K    p′ 
 
     w        z0 
 
  p    K′       p    K′ 
 e-      νe     e-      νe 
 
 
This reaction was used to detect solar neutrino in several water Cherenkov detector 
experiments. 
 
We now consider the charged-current contribution to this process.  At low energy 
and intermediate energy, it is appropriate to adopt Fermi’s contact current-current 
interaction.  The invariant amplitude is 
 

 ( ) ( ) ( )( ) ( ) ( ) ( )( )5 51 1
2

GM u K u p u p u Kµ
µγ γ γ γ′ ′= − −  (1) 

 
To evaluate 2M , one needs M* which contains adjoint current such as 
 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

* †5 5

5

1 1

1

u K u p u K u p

u p u K

µ µ

µ

γ γ γ γ

γ γ

   ′ ′− = −   
′= −

 (2) 

(Note that ( )( ) ( ) ( )( ) ( )
*5 51 1u K u p u p u Kγ γ ′ ′− = +  ) 

 
( )

2
2 2 51 1

2 4spin

GM M Tr pµγ γ= = −∑ ( )51 Kνγ γ ′−( )
( )5                                1Tr Kµγ γ× − ( )51 pνγ γ ′−( )

 (3) 

 
Note that in Equation 3, a factor of ½ is used instead of ¼ for the average of the 
initial spin states since νe is left-handed and is in a unique spin state (the electron is 
unpolarized and can be in either spin states). 
 
Noting ( )51Tr pµγ γ− ( )51 Kνγ γ ′−( ) 2Tr pµγ= ( )51 Kνγ γ ′−( )  
 
Equation 3 becomes 
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 2 2M G Tr pµγ= ( )51 Kνγ γ ′−( )Tr Kµγ ( )51 pνγ γ ′−( )  (4) 
 
Some useful trace theorems are listed below: 
 
 1Tr Pµγ 2Pνγ( ) ( )( )1 2 1 2 1 24 P P P P P P gµ ν ν µ µν= + −   (5) 
 
 1Tr Pµγ 5

2Pνγ γ( ) 1 24i P Pµανβ
α βε=  (6) 

 ( µανβε  is antisymmetric tensor for 0 ,  ,  ,  3ε α γ β≤ ≤ ,  
0123 1ε = −  and it changes sign upon permutation) 

 
Equations 5 and 6 give 
 

 
1Tr Pµγ 2Pνγ( ) 3Tr Pµγ 4Pνγ( )

( )( ) ( )( )1 3 2 4 1 4 2 332 P P P P P P P P = +    

 (7) 

and 

 
1Tr Pµγ 5

2Pνγ γ( ) 3Tr Pµγ 4Pνγ( )
( )( ) ( )( )1 3 2 4 1 4 2 332 P P P P P P P P = −    

 (8) 

 (note that ( )2µνλσ λ σ λ σ
µνκτ κ τ τ κε ε δ δ δ δ= − − ) 

 
Note that 
 1Tr Pµγ 2Pνγ( ) 3Tr Pµγ

5
4Pνγ γ( ) 0=  (9) 

 
 symmetric WRT μν    antisymmetric WRT μν 
 interchange    interchange 
 
using Equations 7, 8 and 9, Equation 4 becomes 
 

 ( )( )
( )

2 2

2 2

64

       16      ignoring electron's mass

M G K P K P

G S

′ ′=

=

 

 (10) 

 
In the C.M. frame, the differential cross-section is 
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 ( )
2

2
2 2

1
64 4e e

d G Sv e e M
d S
σ ν

π π
− −→ = =

Ω
 (11) 

 
The angular distribution is isotropic, and the total cross-section is 
 

 ( )
2

e e
G Se eσ ν ν
π

− −→ =  (12) 

 
Note that in the lab frame, the angular distribution is no longer isotropic, due to the 
boost.  Hence the νee- → e-νe reaction can still be used to isolate νe originating from 
the sun. 
 
The cross-sections for the νμe- → μ-νe reaction, which can only proceed via charged 
current interaction, are identical to the CC part of νee- → e-νe and are given by 
Equations 11 and 12. 
 
We now consider another related reaction 
 
 e ee eν ν− −→  
 
The reaction proceeds via an intermediate w boson 
 
 eν      e- 
  w- 
 e-     eν  
 
The e ee eν ν− −→  is related to e ee eν ν− −→  via crossing symmetry. 
 
Interchanging νe’s in the initial and final states in e ee eν ν− −→  would lead to 

e ee eν ν− −→ .  (PA ↔ -PD) 
 

 
( ) ( ) ( )
( ) ( ) ( )

22 2

2 2 2

A B D B C A

A C D C A B

S P P P P P P t

t P P P P P P S

′ ′ ′= + = − + = − =

′ ′ ′= − = + = + =
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Hence, s ↔ t would relate e ee eν ν− −→  to e ee eν ν− −→  .  Interchanging s ↔ t, 
Equation 10 becomes 
 

 ( )2 22 2 2 216 4 1 cosM G t G S θ= = −  (13) 

(since ( )1 cos
2
St θ= − −  

 
The differential cross-section in the C.M. frame is 
 

 ( ) ( )
2

2
e 2 1 cos

16e
d G Se e
d
σ ν ν θ

π
− −→ = −

Ω
 (14) 

 
and the total cross-section is 
 

 ( ) ( )
2

e e
1

3 3e e
G Se e e eσ ν ν σ ν ν
π

− − − −→ = = →  (15) 

 
Equation 14 shows that the reaction is backward-peaked and the cross-section 
vanishes at θ = 0o.  This can be readily understood from helicity consideration.  In 
the C.M. frame 
 
 eν     e- 
   in the initial state                        (16) 
 eν     e- 
   in the final state for θC.M. = 0 
 
Angular momentum conservation prohibits scattering to θC.M. = 0 
 
An intuitive interpretation for the factor ⅓ appearing in Equation 15 is that the 
figure in 16 shows that only one of the three helicity states of w can participate in 
the e ee eν ν− −→  reaction. 
 
Another reaction closely related to the e ee eν ν− −→  is 
 
 e ee e ν ν+ − →  
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This reaction can be obtained from e ee eν ν− −→  by crossing νe with e-,  
i.e.  PA↔ -PC 
 
 
Therefore,  ( ) ( ) ( )22 2

A B C B A DS P P P P P P u′ ′ ′= + = − + = − =  
 
Interchanging s ↔ u in Equation 10, we have 
 

 ( )2 22 2 2 216 4 1 cosM G u G S θ= = +  (17) 

 (since ( )1 cos
2
su θ−

= +  

 
 
The differential cross-section is 
 

 ( ) ( )
2

2
2 1 cos

16e e
d G se e
d
σ ν ν θ

π
+ − → = +

Ω
 (18) 

 
and the total cross-section is 
 

 ( ) ( ) ( )
2 1

3 3e e e e e e
G se e e e e eσ ν ν σ ν ν σ ν ν
π

+ − − − − −→ = = → = →  (19) 

 
 
 
Equation 18 shows that eν  in the e ee e ν ν+ − →  cannot go to 180o.  Again, this can 
be understood by considering angular momentum conservation: 
 
 
 e+    e- 
   in the initial state 
 eν     νe 
 in the final state for θC.M. = 180o,  
 and is not allowed due to angular  
 momentum conservation 
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Another reaction closely related to νee- → e-νe is the νed → e-u reaction 
 
 
 νe      e-     νe      e- 
              
 
     w           w 
 
               
 d      u    e-      νe 
 
 
 
The νed → e-u is a semi-leptonic process, but the cross-section is almost identical 
to that of νee- → e-νe.  The only difference is that νed → e-u also contains the cos2θc 
term to account for the mixing between d and s. 
 
 
Similarly, one can show that the νeu → e+d reaction is the analog of e e e eν ν + −→  
reaction. 
 
 
 
 
We can summarize the above discussion with the following table.  If one considers 
only the charged current and set the Cabbibo angle θc to 0, then 
 

 
2

24
d G s
d
σ

π
=

Ω
    ( )

2
2

2 1 cos
16

d G s
d
σ θ

π
= −

Ω
    ( )

2
2

2 1 cos
16

d G s
d
σ θ

π
= +

Ω
 

 
 νee- → e-νe    e ee eν ν− −→     e ee e ν ν+ − →  
 νμe- → μ-νe    ee µν µ ν− −→     ee µµ ν ν+ − →  
 νed → e-u     eu e dν +→     (20) 
 ed e uν +→      eu e dν −→  
 νμd → μ-u     u dµν µ+→  
 d uµν µ+→      u dµν µ−→  
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Note that in (20), an isotropic angular distribution is obtained if the initial colliding 
pair have identical helicities (both are left-handed, or both are right-handed).  If 
they have opposite helicity, then the cross-section is anisotropic and the integrated 
cross-section drops to ⅓ of the isotropic reactions. 
 
The table (20) shows that there are no interactions between ,  ,  ,  u d d uµ µ µ µν ν ν ν . 
 
 
Neutrino-Induced Deep-Inelastic Scattering (DIS) 
 
The underlying processes for neutrino induced DIS off a nucleon include: 
 

 
( )

( ) ( )

2

2

2
2

2

4

1 cos
16

d G sd u
d
d G su d
d

µ

µ

σ ν µ
π

σ ν µ θ
π

−

+

→ =
Ω

→ = +
Ω

 (21) 

 
It is useful to express Equation 21 in terms of Lorentz invariant quantities such as 

y, where p qy
p K

=




 

 

 ( ) ( )11 1 1 cos
2

p K Kp q p Ky
p K p K p K

θ
′− ′

= = = − = − +


 

  

 (22) 

 
Hence, 1 + cos θ = 2(1 – y) 
 

Also, 
2 sin 2 cos 4

1
4

d d d dy
d d
d dy

π θ θ π θ π
σ σ

π

Ω = = − =

=
Ω

 (23) 

 
Equation 21 should be written as 
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( )

( ) ( )

2

2

2
2

2

ˆ
4

1 cos
16

d G sd u
d
d G su d
d

µ

µ

σ ν µ
π

σ ν µ θ
π

−

+

→ =
Ω

→ = +
Ω

 (24) 

 
where ŝ  represents the Mandelstam parameter s in the νμd system.  Similarly, one 
can define ˆ ˆ and t u . 
 
For a DIS process 
 
 
   ν  μ 
 
    
 q  q′ 

p  x 
 
 

ˆˆ ˆ,  , s t u  refer to the ν + q → μ + q′ subprocess, and s, t, u refer to the ν + N → μ + x 
process. 
 

 ( ) ( ) ( )
2ˆ ˆ ˆ ˆˆ 2 2 2a b a b a b a bs P P P P P xP x P P xs= + = = =      (25) 

 
Similarly, one can show that  ˆ ˆ;  t t u xu= =  
 
Using Equations 22, 23 and 25, Equation 24 becomes 
 

 
( )

( ) ( )

2

2
2

     (same for )

1      (same for )

d G xsd u d u
dy
d G xsu d y u d
dy

µ µ

µ µ

σ ν µ ν µ
π

σ ν µ ν µ
π

− +

+ −

→ = →

→ = − →
 (26) 

 
Equation 26 corresponds to DIS on the quark which carries a fraction x of the 
nucleon’s momentum.  For DIS on a nucleon, one needs to take into account the 
probability that the quark carries a momentum fraction x.  Hence 
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 ( ) ( ) ( ) ( )
2

21p p
d G xsp x d x y u x

dxdy µ
σ ν µ

π
−  → = + −   (27) 

 
where the scattering off an antiquark is also considered. 
 
(Note that in Equation 27 there is no 2

qe  factor, since it is a weak interaction and 
the coupling is not proportional to e2.) 
 
Similarly, for a DIS off a neutron, we have 
 

 ( ) ( ) ( ) ( )
2

21n n
d G xsn x d x y u x

dxdy µ
σ ν µ

π
+  → = + −   (28) 

 
Isospin symmetry demands dn (x) = up (x); ( ) ( )n pu x d x=  
 
For a scattering off an isoscalar target, which has an equal number of protons and 
neutrons (like d, 12C, 40Ca, . . . ), the DIS cross-section per nucleon is an average of 
Equations 27 and 28: 
 

( ) ( ) ( )( ) ( ) ( ) ( )( )
2

21
2 p p p p

d G xsN x u x d x y u x d x
dxdy µ
σ ν µ

π
−  → = + + − +   (29) 

 
Similarly, 
 

( ) ( ) ( )( ) ( ) ( ) ( )( )
2

21
2 p p p p

d G xsN x u x d x y u x d x
dxdy µ
σ ν µ

π
+  → = + + − +   (30) 

 
Note that the Nµν  DIS is obtained from the νμN DIS by s ↔ u interchange (or 1 ↔ 
(1 – y)2 interchange). 
 
Equations 29 and 30 show that a comparison between  
 

 ( )d N x
dxdy µ
σ ν µ−→  

and 
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 ( )d N x
dxdy µ
σ ν µ+→  

 
allows a separation of Q (x) = u (x) + d (x) from the antiquark distribution 
( ) ( ) ( )Q x u x d x= + . 

 
 
Neutral-Current Weak Interaction 
 
For processes such as e eµ µν ν− −→  and e eµ µν ν+ +→ , only neutral-current 
contributes.  Similarly for reactions q qµ µν ν→  and q qµ µν ν→ . 
 
 νμ  νμ 
 
 
 
 e-  e- 
 (q)   (q) 
 
 
The invariant matrix element for q qµ µν ν→  can be written as 
 

 ( ) ( )5 51
2

q q
q V A q

GM u u u C C uµ
ν ν µγ γ γ γ   = − −     (31) 

 
 
M contains two terms: 
 
  and L L L L L R L Rq q q qν ν ν ν→ →  
 
Note that Equation 31 shows that the neutral-current for neutrino is purely left-
handed (since only left-handed neutrino is know to exist).  For quarks, the neutral 
current can be a mixture of V – A and V + A currents: 
 
 ( ) ( ) ( )5 5 51 1q q q q

q V A q q L q q R qu C C u u g u u g uµ µ µγ γ γ γ γ γ− = − + +  (32) 
 
 left-handed    right-handed 
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where 

 ( ) ( )1 1 and 
2 2

q q q q q q
L V A R V Ag C C g C C= + = −  (33) 

 
represent the V- A and the V + A component of the neutral current, respectively. 
 
Note that for V – A coupling:  q is left-handed, q  is right-handed 
 for V + A coupling:  q is right-handed, q  is left-handed 
 
The expression for ν-induced neutral-current DIS on an isoscalar target is 
 

 
( ) ( ) ( ) ( )( ){

( ) ( ) ( )( )}

2
22

22

1
2

                                1

L

R

d G xsN x g Q x y Q x
dxdy

g Q x y Q x

σ ν ν
π

→ = + −

+ + −
 (34) 

 
For N xν ν→ , one interchanges s ↔ u (or 1 ↔ (1 – y)2). 
 

 
( ) ( ) ( ) ( )( ){

( ) ( ) ( )( )}

2
22

22

1
2

                                1

NC

L

R

d G xsN x g Q x y Q x
dxdy

g Q x y Q x

σ ν ν
π

→ = + −

+ + −
 (35) 

 
where 
 ( ) ( ) ( ) ( )2 2 2 22 2          u d u d

L L L R R Rg g g g g g= + = +  (36) 
 
In the electro-weak theory, the values of the vector coupling f

VC  and axial-
coupling f

AC  are given as 
 
 3 22sinf

V f fC T wQθ= −  (37) 
 
 3f

A fC T=  (38) 
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where Qf is the electric charge of the fermion, and 3
fT  is the third component of the 

weak isospin of the fermion.  Leptons and quarks form weak-isospin doublets as 
follows: 
 

 e u c t
e d s b

µ τν ν ν
µ τ− − −

      
      
      

 

 
3 1

2fT =  for the upper members of the doublets and 3 1
2fT = −  for the lower 

members. 
 
 Table 39 
  Qf    3

fT     f
AC     f

VC  
 νe, νμ, ντ    0    + ½    ½    ½  
 e-, μ-, τ-    -1    1

2−     1
2−          ( )21 2sin  ~  0.032 wθ− + −  

 u, c, t    2
3+     1

2+     1
2+             ( )21 4 sin  ~  0.192 3 wθ−  

 d, s, b    1
3−     1

2−     1
2−        ( )21 2 sin  ~  0.342 3 wθ− + −  

 
 
In table 39, the values for f

VC  were calculated using sin2θw = 0.231, determined 
from experiments. 
 
This table shows that for neutrinos, CA = CV = ½ , and 1 ,  02L Rg gν ν= = , reflecting 
that ν is left-handed. 
It also shows that for e-, μ-, τ-, 10,  2V AC C = − , hence the neutral current in this 

case is almost purely an axial-vector coupling, with 1 1,  4 4
e e
L Rg g− +  . 

 
A comparison between Equations 30 and 35 shows that the neutral current cross-
section reduces to the charged current cross-section when 
 
 gL = 1, gR = 0 
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We now revisit ν – e scattering taking into account the contribution of neutral 
current. 
 
First, we consider the νμe- → νμe- and e eµ µν ν− −→  reactions, which can only 
proceed via neutral current 
 

 
( ) ( )( )

( )( )

5

5

1
2

                                     

NC N

e e
e V A e

Gm e e u u

u C C u

µ
µ µ ν ν

µ

ν ν γ γ

γ γ

→ = −

−
 (40) 

 
where GN = GF = G 
 
Following procedures analogous to Equations 1 and 10, one obtains 
 

 
( ) ( )

( ) ( ) ( )

2
2

22

2 2 2 2

1

                          1
4

e
L R

e e e e
V A V A

d G se e g g y
dy

G s C C C C y

µ µ
σ ν ν

π

π

 → = + − 

 = + + − −  

 (41) 

 

 ( ) ( ) ( ) ( )
2 2 221

4
e e e e
V A V A

d G se e C C y C C
dy µ µ
σ ν ν

π
 → = + − + −  

 (42) 

 
Note that Equation 42 is obtained from Equation 41 by s ↔ u interchange (or  1 ↔ 
(1 – y)2).  These two cross-sections are also related by e e

A AC C↔−  interchange. 
 
Integrating over y, Equations 41 and 42 become 
 

 ( ) ( )2 2
2

3
e e e e
v v A A

G se e C C C Cµ µσ ν ν
π

→ = + +  (43) 

 

 ( ) ( )2 2
2

3
e e e e
v v A A

G se e C C C Cµ µσ ν ν
π

→ = − +  (44) 

 
Since 0e

vC   (Table 39), we expect that ( ) ( )e e e eµ µ µ µσ ν ν σ ν ν→ →  (recall that 

( ) ( )3cc cc
e e e ee e e eσ ν ν σ ν ν− − − −→ = → ). 
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The e ee eν ν− −→  reaction contains contributions fro neutral current as well as 
charged current: 
 
 νe          νe     νe           νe 
                  
 
     z0   +  w 
 
              
 e-      e-     e-      e- 
 
 
The corresponding amplitudes are 
 

 ( ) ( )( ) ( )( )5 51
2

NC e e
e e v A

GM e e e C C eµ
µν ν νγ γ ν γ γ→ = − −  (45) 

 

 
( ) ( )( ) ( )( )

( )( ) ( )( )

5 5

5 5

1 1
2

                           1 1
2

CC
e e

GM e e e e

G e e

µ
µ

µ
µ

ν ν γ γ ν νγ γ

νγ γ ν γ γ

→ = − − −

= − −
 (46) 

 
The negative sign for the CC diagram is due to the interchange of the outgoing 
fermions. 
 
The second line in Equation 46 is obtained using the Fierz transformation, which 
relates the ‘charge-exchange ordering’ to ‘charge-retention ordering’.  (For a 
derivation of the Fierz theorems, see Giunti and Kim) 
 
Adding the NC and the CC contributions, one has 
 

 ( )( ) ( ) ( )( )5 51 1 1
2

NC CC e e
v A

GM m e C C eµ
µνγ γ ν γ γ + = − + − +   (47) 

 
Equation 47 has a form analogous to Equation 40, except that 
 
 1          1e e e e e e

v c v A A AC C C C C C′ ′→ = + → = +  (48) 
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From Equations 43 and 48, we have 
 

 ( )
( )

( ) ( )( ) ( )
( ) ( )

2 2

2 2

1 1 1 1e e e eNC CC
v v A Ae e

NC e e e e
v v A A

C C C Ce e
e e C C C Cµ µ

σ ν ν
σ ν ν

+ + + + + + +→
=

→ + +
 (49) 

 
Similarly for e ee eν ν→ , we have 
 

 ( )
( )

( ) ( )( ) ( )
( ) ( )

2 2

2 2

1 1 1 1e e e e
v v A Ae e

e e e e
v v A A

C C C Ce e
e e C C C Cµ µ

σ ν ν
σ ν ν

+ − + + + +→
=

→ − +
 (50) 

 
Summarizing: 
 

Reaction    Current    Cross-section is proportional to 
e eµ µν ν− −→     NC    ( ) ( )2 2e e e e

v v A AC C C C+ +  

e eµ µν ν− −→     NC    ( ) ( )2 2e e e e
v v A AC C C C− +  

e ee eν ν− −→     NC + CC    ( ) ( )( ) ( )2 2
1 1 1 1e e e e

v v A AC C C C+ + + + + +  

e ee eν ν− −→     NC + CC    ( ) ( )( ) ( )2 2
1 1 1 1e e e e

v v A AC C C C+ − + + + +  
 
Using 1

2
e
AC = − , 0.03e

vC = −  (from Table 39), Equation 49 gives 
 

 ( )
( ) 6.3e ee e

e eµ µ

σ ν ν
σ ν ν

→
=

→
 (51) 

 
which is in good agreement with the experimental result: 
 

 
( )
( )

( )
( )

43 2

43 2

0.93 10 cm E 10 MeV
0.16 10 cm E 10 MeV

e ee e
e eµ µ

σ ν ν

σ ν ν

− − −

−− −

→ ×
=

×→
 (52) 

 
The contribution of neutral current, together with the interference between the 
neutral current and the charged current terms, increases the νee → νee cross-section 
significantly over the νμe- → νμe- (and ντe- → ντe-) cross-section.  This fact has an 
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interesting consequence for neutrino oscillation.  When ν is propagating through a 
dense medium such as the sun and the earth’s core, the effective ‘index of 
refraction’ for νe is different from that of νμ and ντ.  This modifies the ‘potential 
energy’ of νe relative to νμ and ντ and effectively changes the missing angle 
between νe and νμ (ντ).  One obtains 
 

 
2

2

2

tantan
1 sec

v
M

v
v

e

L
L

θθ
θ

=
 −  
 

 (53) 

 
θv is the mixing angle in vacuum 
 

 2

4 2          v e
e

EL L
m Gn

νπ π
= =
∆

 (54) 

 
2m∆  is the mass difference squared, ne is the electron density.  Equation 54 shows 

that the mixing angle θv can be significantly amplified in matter (when 
2sec 1v

v
e

L
L θ → ).  This is the MSW effect. 

 
The existence of the neutral current also leads to some parity violating γ* - z0 
interference effects.  We consider two examples: 
 
First consider the e+e- → μ+μ- reaction.  The contributing diagrams are 
 
 e+     μ+    e+     μ+ 
  γ*     +     z0 
 
 e-     μ-    e-     μ- 
 
 
For a pure EM interaction, the angular distribution is 1 + cos2θ c.m.  This can be 
understood from the consideration that the helicities of the e+, e-, μ+, μ- have the 
following four possible combinations (and angular distributions). 
 
 R L R Le e µ µ+ − + −→     (1 + cosθ)2 
 R L L Re e µ µ+ − + −→     (1 – cosθ)2 
 L R L Re e µ µ+ − + −→     (1 + cosθ)2 



PHYS 598NEU  18 

 L R R Le e µ µ+ − + −→     (1 – cosθ)2 
 
With a pure vector coupling, these four processes have equal probability, and the 
angular distribution is ~ 1 + cos2θ (since the terms linear in cosθ cancel). 
 
When z0 term is included, the four processes no longer have equal weighting.  
Hence the angular distribution is now given by d

d
σ

Ω  ~ 1 + a cosθ + b cos2θ, with 
a ≠ 0.  This Forward-Backward asymmetry is observed experimentally, and leads 
to a determination of sinθw, the weak coupling angle.  Another example is the 
parity violation, observed in e-N deep-inelastic scattering.  The eq → eq scattering 
has two terms: 
 
 e-      e-     e-      e- 
     k k′    k k′     
 
     γ      +     z0 
 
     p p′    p p′      
 q      q    q      q 
 
 
 0z

M M Mγ= +  

 ( ) ( ) ( ) ( )2
2

1
qM Q e u k u k u p u p

q
µ

γ µγ γ′ ′= −  

 
( ) ( ) ( )

( ) ( ) ( )

0

22
5

2 2 2

5

4cos

                               

ze e
v Az

z

q q
v A

g q q MgM u k C C u k
w q M

u p C C u p

µν µ νµ

ν

γ γ
θ

γ γ

  −
′= − −   −  

′ − 

 

 
For 0

2 2 ,  z z
q M M0  becomes 

 

 ( ) ( ) ( ) ( ) ( ) ( )0

2
5 5

2 24cos
e e q q
v A v Az

z

gM u k C C u k u p C C u p
wM

µ
µγ γ γ γ

θ
 ′ ′= − − −   

 

but 
2

2 28 cos2 z

G g
M wθ

=   
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Therefore, 
 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0
5 5

5 5

5 5

2

1 1      2 1 1
2 2
1 1                  1 1
2 2

e e q q
v A v Az

e e
L R

q q
L R

M G u k C C u k u p C C u p

G u k C u k u k C u k

u p C u p u p C u p

µ
µ

µ µ

µ µ

γ γ γ γ

γ γ γ γ

γ γ γ γ

   ′ ′= − −   
 ′ ′= − + +  
 ′ ′− + +  

 

 
where 
 

 
          

          

e e e e e e
L v A R v A
q q q q q q
L v A R v A

C C C C C C

C C C C C C

= + = −

= + = −
 

 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0
5 5

5 5

5 5

5 5

1 12 1 1
2 2
1 1                  1 1
2 2
1 1                  1 1
2 2
1 1                  1 1
2 2

e q
L Lz

e q
L R

e q
R L

e q
R R

M G u k C u k u p C u p

u k C u k u p C u p

u k C u k u p C u p

u k C u k u p C u p

µ
µ

µ
µ

µ
µ

µ
µ

γ γ γ γ

γ γ γ γ

γ γ γ γ

γ γ γ γ

 ′ ′= − −

′ ′+ − +

′ ′+ + −

′ ′+ + + 

 

 
Since  ( ) ( )5 52 1 1µ µ µγ γ γ γ γ= + + −  
 
we have 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2
5 5

2

5 5

5 5

5 5

1 11 1
2 2
1 1                  1 1
2 2
1 1                  1 1
2 2
1 1                  1 1
2 2

qQ e
M u k u k u p u p

q

u k u k u p u p

u k u k u p u p

u k u k u p u p

µ
γ µ

µ
µ

µ
µ

µ
µ

γ γ γ γ

γ γ γ γ

γ γ γ γ

γ γ γ γ

 ′ ′= − − −

′ ′+ − +

′ ′+ + −

′ ′+ + + 

 

 
where 
 

 
2

2

2Gqr
e

= −  

 

 2 21
4 spins

M M= ∑  

 
Only the ‘diagonal’ terms contribute to 2M , since the non-diagonal terms all 
contain factor of (1 – γ5)(1 + γ5) = 0.  Therefore, only four terms remain when one 

evaluates 2M . 
 
 2 2 2 2 2

LL LL LR LR RL RL RR RR
M M M M M

→ → → →
= + + +  

 
First consider LL → LL 
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( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

4 22
4

5 5

5 5

4 2 5
4

1  
4

1 1                   1 1
2 2
1 1                       1 1
2 2

1 1               1
4 16

e q
q L LLL LL

spin

e q
q L L

eM Q r C C
q

u k u k u k u k

u p u p u p u p

e Q rC C Tr k
q

µ ν

µ ν

µ

γ γ γ γ

γ γ γ γ

γ γ

→
= +

 ′ ′− −  

 ′ ′− −  

= + −

∑

( )51 kνγ γ ′−( )
( )5                           1Tr pµγ γ− ( )51 pνγ γ ′−( )

( ) ( )( )
4 2

4

4               e q
q L L

e Q rC C k p k p
q

′ ′= +  

 

 
 
but ( )( ) 2

4
sk p k p′ ′ =   

 

Therefore, ( )
4 2 2

2 4

1  
64

e q
q L L

LL LL

d e Q r C C s
d s q
σ

π→

  = + Ω 
 

 

using ( )
2

24 2 1 cos
4
sq t θ= = −  

 

 
( ) ( )

2

1 11 1 cos           1 cos
2 2

4                    
4

y y

d d e
dy d

θ θ

σ σ π α
π

− = + = −

= =
Ω

 

 
We have 
 

 ( )
2 2

2  ......e q
q L L

LL LL

d Q r C C
dy sy
σ πα

→

 
= + 

 
 (55) 

Similarly 
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 ( )
2 2

2  ......e q
q R R

RR RR

d Q r C C
dy sy
σ πα

→

 
= + 

 
 (56) 

 
Now, we consider LR → LR 
 

 

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( )

4 22
4

5 5

5 5

4 2

4

1  
4

1 1                   1 1
2 2
1 1                       1 1
2 2

               4  

e q
q L RLR LR

spin

e q
q L R

eM Q r C C
q

u k u k u k u k

u p u p u p u p

e Q r C C k p k p
q

µ ν

µ ν

γ γ γ γ

γ γ γ γ

→
= + ×

 ′ ′− −  

 ′ ′+ +  

′ ′= +

∑

 

 

 

but  ( )( ) ( )
22

22 21 1 cos 1 1
4 4 2 4
uk p k p s s yθ+ ′ ′ = = = − 

 
   

 

Therefore ( ) ( )
2 2 2

2  1 ......e q
q L R

LR LR

d Q r C C y
dy sy
σ πα

→

 
= + − 

 
 (57) 

 

Similarly ( ) ( )
2 2 2

2  1 ......e q
q R L

RL RL

d Q r C C y
dy sy
σ πα

→

 
= + − 

 
 (58) 

 
 
For an isoscalar target with u = d, and ignoring the antiquark contribution, 
 

u d u d u d u d

RR RR RL RL LR LR LL LL
u d u d u d

RR RR RL RL LR LR

d d d d d d d d
dy dy dy dy dy dy dy dy

A
d d d d d d d
dy dy dy dy dy dy d

σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ

               
+ + + − − − −               

               =
           

+ + + + + +           
           

u d

LL LL

d
y dy

σ   
−   

   
 
Using Equations (55), (56), (57), and (58), we obtain for the numerator of A 
(ignoring terms quadratic in r): 
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numerator of 

  
( )

2

2

2

4 2 1 12 2
9 3 9 3

4 2 1 1      2 2 1
9 3 9 3

4 2 1 1      2 2
9 3 9 3

4 2 1 1      2 2
9 3 9 3

e u e d
R R R R

e u e d
R L R L

e u e d
L L L L

e u
L R

A r C C r C C
sy

r C C r C C y

r C C r C C

r C C r

πα     = + + −         
    + + + − −        
    − + + −        

  − + + − 
  

( )21e d
L RC C y

  −     

 

 

 
{

( ) }

2

2

2 2

2 2 2
3

  1 2 2

e u e d e u e d
R R R R L L L L

u e d e u e d
R L R L L R L R

r C C C C C C C C
sy

y C C C C C C C C

πα    = − − +    

 + − − − + 

 

 

 
( ) ( ){

( ) ( ) ( ) }

2

2

2

2 2 2 2 2
3

  1 2 2 2 2

e u d e u d
v A A A v v

e u d e u d
v A A A v v

r C C C C C C
sy

y C C C C C C

πα    = − + + −    

 + − − + − + 

 

 
where we use CR = CV – CA          CL = CV + CA 
 

with the definition of 
( )
( )

1

2

2

2

e u d
A v v

e u d
v A A

a C C C

a C C C

= −

= −
 

 
then, we have numerator of 
 

 ( )( )
2

2
1 2 2 12

2 2 2 2 2 1
3
rA a a a a y

sy
πα   = − − + − −   

 (59) 

 
The denominator of A is simply 
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denominator of  ( )
2

2
2

10 1 1
9

A y
sy
πα   = + −   

 (60) 

 
where we ignore terms linear or quadratic in r.  This is justified since the 
numerator of A is linear in r and any term linear in r in the denominator only 
contribute to r2 in A and can be ignored. 
 

From Equations (5) and (6), we obtain (recall that 
2

2

2Gqr
e

−
= ) 

 

 ( )
( )

22

1 2 22

1 16 2
5 1 1

yGqA a a
e y

   − −
= +   + −  

 

 
Finally, 

 

( )

( )

1

2 2

2

2

1 1 4 1 2   2 sin sin
2 2 3 2 3

3 20   1 sin
4 9

e u d
A v v

w w

w

a C C C

θ θ

θ

= −

      = − − − − +            
 = − − 
 

 

 
Similarly, 

 

( )

( )

2

2

2

2

1 1 1   2sin 2
2 2 2

3   1 4sin
4

e u d
v A A

w

w

a C C C

θ

θ

= −

      = − + − −            

= − −

 

 
The muon decay, ee µµ ν ν− −→ + + , is an important example of purely lepton 
decay.  The invariant matrix element is given as 
 

 ( ) ( ) ( ) ( ) ( ) ( )5 51 1
2

Gm u k u p u p v kµ
µγ γ γ γ   ′ ′= − −     

 
where the 4-vectors correspond to  
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 ( ) ( ) ( ) ( )ep e p k kµµ ν ν− ′ ′→ + +  
 
It is straight forward to obtain 
 

 ( )( )2 264m G k p k p′ ′=    
 
The decay width is given by 
 

 21
2

d m dQ
E

Γ =  

 
where the Lorentz Invariant Phase Space dQ is 
 

 
( ) ( ) ( )

( ) ( )
3 3 3

4 4
3 3 3   2

2 2 2 2 2 2
d p d k d kdQ p p k k

E w w
π δ

π π π
′ ′

′ ′= − − −
′ ′

 

 
Integrating over the delta function one obtains 
 

 
2

2 2
3

43
12

d G Em E
dE mπ

′Γ  ′= − ′  
 

 
and the decay width 
 

 
2 5

2
30

1
192

m d G mdE
dEτ π
Γ ′Γ = = = ′ ∫  

 
The decay width is proportional to the fifth power of the mass of the decaying 
particle. 
 
Similar results can be obtained for other decays such as  
 
 ee ττ ν ν− −→  
 b cν −→   
 et be ν+→  
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We consider next the π+ → μ+ + νμ decay, which is an example of semileptonic 
decay. 
 
As in cases which involve hadrons, we need to parameterize the hadronic weak 
current based on general principles. 
 
  d     μ+ 
 π+      π+ (q) → μ+ (p) + νμ (k) 
  u    νμ 
 
The leptonic current is 
 
 ( ) ( ) ( )51u p v kµγ γ−  
 
The hadronic current can only be a combination of V and A (in order to make the 
invariant amplitude a scalar or pseudoscalar). 
 

 ( ) ( ) ( ) ( )51
2

GM f q u p v kµ
µπ γ γ = −   

 
The only V or A which can be constructed from a single spin-0 object (like π) is qμ, 
and fπ represents the pion structure factor. 
 

 ( )2 2 2 24M G f m p kπ µ=   
 
Note that the mass2 of muon enters.  For π+ → e+ + νe decay, the 2

em  term greatly 
reduces the decay probability. 
 

 
222

2 2
2

1 1
8

mGP f m m
m

µ
π π µ

πτ π
 

= = −  
 

 

and 

 
( )
( )

2 2
2 2

4
2 2 1.2 10e e e

P e m m m
m m mP

π

µ π µµ

π ν

π µ ν

+ +
−

+ +

→    −
= = ×      −→    

 

 
 
 e+    π+    νe 
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Since π+ has spin-0, and νe has negative helicity, e+ is required to be left-handed in 
order to conserve angular momentum.  e+ is therefore in the wrong helicity state, 
which inhibits the decay probability. 
 
Similar suppression is observed for k decays: 
 

 
( )
( )

52.1 10ek e
k µ

ν

µ ν

− −
−

− −

Γ →
= ×

Γ →
 

 
One can also compare the k µµ ν− −→  with µπ µ ν− −→ : 
 

 
( )
( )

22

2 2

22 2 2

1
sin
cos

1

k
c k k

c

m
mk f mR

f m m
m

µ

µ

π πµ µ

π

µ ν θ
θπ µ ν

− −

− −

  −  Γ →    = =
Γ →   −  

   

 

 
From the experimental value of R, one determines 
 

 1.28kf
fπ
=  

 
Another decay related to π → μν is 
 
 ττ π ν− −→  
or 
 k ττ ν− −→  
 
The decay width is given as 
 

 ( )
22 2 3 2

21
16

G f m m
m

π τ π
τ

τ

τ π ν
π

− −  
Γ → = − 

 
 

 
Note that there is no helicity suppression in this decay, and  
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 ( ) ( )kτ ττ π ν τ τ− − − −Γ → > Γ →  
 

from phase-space consideration (and the cabbibo angle θc and kf
fπ

 

considerations). 
 
Another example of semi-leptonic weak decay is 
 
 0π π ν+ +→   
or  ( )a bM M ν→   
 0k π ν+ +→   
 
Now, we have two spin-0 hadrons.  Therefore, we have two vectors, ka and kb, 
available for constructing the hadronic current: 
 
 ( )b a a a b bM J M N f k f kα α α= +  
 
One can also extend this to baryonic semileptonic decay 
 
 B B ν′→   
 
We now have two spin-½ Dirac particles.  One can form vector and axial-vector 
hadronic currents of various forms 
 

vector: 

( ) ( )
( ) ( )
( ) ( )

u B u B

u B q u B

u B q u B

α

αν
ν

α

γ

σ

′

′

′

 

 

axial-vector: 

( ) ( )
( ) ( )
( ) ( )

5

5

5

u B u B

u B q u B

u B q u B

α

αν
ν

α

γ γ

σ γ

γ

′

′

′
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( ) ( ) ( ) ( )
( ) ( )
( ) ( )

2 2 2
1 2 3

2 5 2 5
1 2

2 5
3

                    

                    

B J B Nu B f q if q q f q q

g q ig q q

g q q u B

α α αν α
ν

α αν
ν

α

γ σ

γ γ σ γ

γ

′ ′= + +

− −

− 

 


