PHYS 515: Homework Set 5

Due Date: Tuesday March 10, 2020, at the beginning of class.
Topic: Graduate General Relativity 1

1. Carroll 3.1

Verify these consequences of metric compatibility $\left(\nabla_{\sigma} g_{\mu \nu}=0\right)$:

$$
\begin{aligned}
\nabla_{\sigma} g^{\mu \nu} & =0 \\
\nabla_{\lambda} \epsilon_{\mu \nu \rho \sigma} & =0 .
\end{aligned}
$$

2. Carroll 3.3

Imagine we have a diagonal metric $g_{\mu \nu}$. Show that the Christoffel symbols are given by

$$
\begin{aligned}
\Gamma_{\mu \nu}^{\lambda} & =0 \\
\Gamma_{\mu \mu}^{\lambda} & =-\frac{1}{2}\left(g_{\lambda \lambda}\right)^{-1} \partial_{\lambda} g_{\mu \mu} \\
\Gamma_{\mu \lambda}^{\lambda} & =\partial_{\mu}\left(\ln \sqrt{\left|g_{\lambda \lambda}\right|}\right) \\
\Gamma_{\lambda \lambda}^{\lambda} & =\partial_{\lambda}\left(\ln \sqrt{\left|g_{\lambda \lambda}\right|}\right)
\end{aligned}
$$

In these expressions, $\mu \neq \nu \neq \lambda$, and repeated indices are not summed over.

3. Carroll 3.2

You are familiar with the operations of gradient $(\nabla \phi)$, divergence $(\boldsymbol{\nabla} \cdot \mathbf{V})$, and curl $(\nabla \times \mathbf{V})$ in ordinary vector analysis in three-dimensional Euclidean space. Using covariant derivatives, derive formulae for these operations in spherical polar coordinates r, θ, ϕ defined by

$$
\begin{aligned}
x & =r \cos \theta \sin \phi \\
y & =r \sin \theta \sin \phi \\
z & =r \cos \theta
\end{aligned}
$$

Compare your results to those in Jackson (1999) or an equivalent text. Are they identical? Should they be?
4. Carroll 3.4

In Euclidean three-space, we can define paraboloidal coordinates (u, v, ϕ) via

$$
x=u v \cos \phi \quad y=u v \sin \phi \quad z=\frac{1}{2}\left(u^{2}-v^{2}\right)
$$

a) Find the coordinate transformation matrix between paraboloidal and Cartesian coordinates $\partial x^{\alpha} / \partial x^{\beta^{\prime}}$ and the inverse transformation. Are there any singular points in the map?
b) Find the basis vectors and basis one-forms in terms of Cartesian basis vectors and forms.
c) Find the metric and inverse metric in paraboloidal coordinates.
d) Calculate the Christoffel symbols.
e) Calculate the divergence $\nabla_{\mu} V^{\mu}$ and Laplacian $\nabla_{\mu} \nabla^{\mu} f$.

5. Schutz 5.11

For the vector field \vec{V} whose Cartesian components are $\left(x^{2}+3 y, y^{2}+3 x\right)$
a) Compute $V_{, \beta}^{\alpha}$ in Cartesian.
b) Compute the transformation $\frac{\partial x^{\mu^{\prime}}}{\partial x^{\alpha}}$ from Cartesian to polar, and its inverse $\frac{\partial x^{\alpha}}{\partial x^{\mu^{\prime}}}$.
c) Compute the transformation $\frac{\partial x^{\mu^{\prime}}}{\partial x^{\alpha}} \frac{\partial x^{\beta}}{\partial x^{\nu^{\prime}}} V^{\alpha}{ }_{\beta}$ to polars.
d) Find the components of $V^{\mu^{\prime}} ; \nu^{\prime}$ directly in polars using the Christoffel symbols (calculate them, then use them).
e) Compute the divergence $V_{, \alpha}^{\alpha}$ using your results from part a).
f) Compute the divergence $V^{\mu^{\prime}}{ }_{; \mu^{\prime}}$ using your results in either c) or d).
g) Compute the divergence $V^{\mu^{\prime}}{ }_{; \mu^{\prime}}$ using

$$
V_{; \mu^{\prime}}^{\mu^{\prime}}=\frac{1}{r} \partial_{r}\left(r V^{r}\right)+\partial_{\theta} V^{\theta} .
$$

