PHYS 515: Homework Set 5

Due Date: Tuesday March 10, 2020, at the beginning of class.

Topic: Graduate General Relativity 1

1. <u>Carroll 3.1</u>

Verify these consequences of metric compatibility $(\nabla_{\sigma} g_{\mu\nu} = 0)$:

$$\begin{aligned} \nabla_{\sigma}g^{\mu\nu} &= 0 \\ \nabla_{\lambda}\epsilon_{\mu\nu\rho\sigma} &= 0 \end{aligned}$$

2. <u>Carroll 3.3</u>

Imagine we have a *diagonal* metric $g_{\mu\nu}$. Show that the Christoffel symbols are given by

$$\begin{split} \Gamma^{\lambda}_{\mu\nu} &= 0 , \\ \Gamma^{\lambda}_{\mu\mu} &= -\frac{1}{2} (g_{\lambda\lambda})^{-1} \partial_{\lambda} g_{\mu\mu} , \\ \Gamma^{\lambda}_{\mu\lambda} &= \partial_{\mu} \left(\ln \sqrt{|g_{\lambda\lambda}|} \right) , \\ \Gamma^{\lambda}_{\lambda\lambda} &= \partial_{\lambda} \left(\ln \sqrt{|g_{\lambda\lambda}|} \right) . \end{split}$$

In these expressions, $\mu \neq \nu \neq \lambda$, and repeated indices are *not* summed over.

3. Carroll 3.2

You are familiar with the operations of gradient $(\nabla \phi)$, divergence $(\nabla \cdot \mathbf{V})$, and curl $(\nabla \times \mathbf{V})$ in ordinary vector analysis in three-dimensional Euclidean space. Using covariant derivatives, derive formulae for these operations in spherical polar coordinates r, θ, ϕ defined by

$$x = r \cos \theta \sin \phi ,$$

$$y = r \sin \theta \sin \phi ,$$

$$z = r \cos \theta .$$

Compare your results to those in Jackson (1999) or an equivalent text. Are they identical? Should they be?

4. <u>Carroll 3.4</u>

In Euclidean three-space, we can define paraboloidal coordinates (u, v, ϕ) via

$$x = u v \cos \phi$$
 $y = u v \sin \phi$ $z = \frac{1}{2}(u^2 - v^2)$.

- a) Find the coordinate transformation matrix between paraboloidal and Cartesian coordinates $\partial x^{\alpha}/\partial x^{\beta'}$ and the inverse transformation. Are there any singular points in the map?
- b) Find the basis vectors and basis one-forms in terms of Cartesian basis vectors and forms.
- c) Find the metric and inverse metric in paraboloidal coordinates.
- d) Calculate the Christoffel symbols.
- e) Calculate the divergence $\nabla_{\mu}V^{\mu}$ and Laplacian $\nabla_{\mu}\nabla^{\mu}f$.
- 5. <u>Schutz 5.11</u>

For the vector field \vec{V} whose Cartesian components are $(x^2 + 3y, y^2 + 3x)$

- a) Compute $V^{\alpha}_{,\beta}$ in Cartesian.
- b) Compute the transformation $\frac{\partial x^{\mu'}}{\partial x^{\alpha}}$ from Cartesian to polar, and its inverse $\frac{\partial x^{\alpha}}{\partial x^{\mu'}}$.

- c) Compute the transformation $\frac{\partial x^{\mu'}}{\partial x^{\alpha}} \frac{\partial x^{\beta}}{\partial x^{\nu'}} V^{\alpha}_{,\beta}$ to polars.
- d) Find the components of $V^{\mu'}_{;\nu'}$ directly in polars using the Christoffel symbols (calculate them, then use them).
- e) Compute the divergence $V^{\alpha}_{\ ,\alpha}\,$ using your results from part a).
- f) Compute the divergence $V^{\mu'}_{\ ;\mu'}$ using your results in either c) or d).
- g) Compute the divergence $V^{\mu'}_{\ ;\mu'}$ using

$$V^{\mu'}_{;\mu'} = \frac{1}{r} \partial_r (rV^r) + \partial_\theta V^\theta .$$