
PHYS 515: Homework Set 3

Due Date: Tuesday February 25, 2020, at the beginning of class.

Topic: Graduate General Relativity 1

1. Carroll 1.8

If ∂νT
µν = Qµ, what physically does the spatial vector Qi represent? Use the dust energy momentum tensor

to make your case.

2. Carroll 1.9

For a system of discrete point particles the energy-momentum tensor takes the form

Tµν =
∑
a

p
(a)
µ p

(a)
ν

p0(a)
δ(3)(x− x(a)) ,

where the index a labels the different particles. Show that, for a dense collection of particles with isotropically
distributed velocities, we can smooth over the individual particle worldlines to obtain the perfect-fluid energy-
momentum tensor (1.114).

3. Schutz 4.24

Astronomical observations of the brightness of objects are measurements of the flux of radiation T 01 from the
object at Earth. This problem calculates how that flux depends on the relative velocity of the object and Earth.

a) Show that, in the rest frame O of a star of constant luminosity L (total energy radiated per second), the
stress-energy tensor of the radiation from the star at the event (t, x, 0, 0) has components T 00 = T 0x =
T x0 = T xx = L/(4πx2). The star sits at the origin.

b) Let ~X be the null vector that separates the events of emission and reception of the radiation. Show that
~X →O (x, x, 0, 0) for radiation observed at the event (x, x, 0, 0). Show that the stress-energy tensor of (a)
has the frame-invariant form

T =
L

4π

~X ⊗ ~X

(~Us · ~X)4
,

where ~Us is the star’s four-velocity, ~Us →O (1, 0, 0, 0).

c) Let the Earth-bound observer Ō, traveling with speed v away from the star in the x direction, measure the

same radiation, again with the star on the x̄ axis. Let ~X →Ō (R, R, 0, 0) and find R as a function of x.

Express T 0̄x̄ in terms of R. Explain why R and T 0̄x̄ depend as they do on v.

4. Schutz 4.25

Maxwell’s equations for the electric and magnetic fields in vacuum, E and B, in three-vector notation are

∇∇∇×B− ∂

∂t
E = 4πJ ,

∇∇∇×E +
∂

∂t
B = 0 ,

∇∇∇ ·E = 4πρ ,

∇∇∇ ·B = 0 ,

in units where µ0 = ε0 = c = 1. (Here ρ is the density of the electric charge and J the current density.)

a) An antisymmetric (2
0) tensor F can be defined on spacetime by the equations F 0i = Ei, F xy = Bz, F yz =

Bx, F zx = By. Find from this definition all other components Fµν in this frame and write them down in
matrix in a matrix.
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b) A rotation by an angle θ about the z axis is one kind of Lorentz transformation, with the matrix

Λβ
′

α =

1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

 .

Show that the new components of F,

Fα
′β′

= Λα
′

µΛβ
′

νF
µν ,

define new electric and magnetic three-vector components (by the rule given in (a)) that are just the same
as the components of the old E and B in the rotated three-space. (This shows that a spatial rotation of F
makes a spatial rotation of E and B.)

c) Define the current four-vector ~J by J0 = ρ, J i = (J)i, and show that two of the Maxwell’s equations are just

Fµν,ν = 4πJµ .

d) Show that the other two of Maxwell’s equations are

Fµν,λ + Fνλ,µ + Fλµ,ν = 0 .

Note that there are only four independent equations here. That is, choose one index value, say zero. Then
the three other values (1,2,3) can be assigned to µ, ν, λ in any order, producing the same equation (up to an
overall sign) each time. Try it and see: it follows from antisymmetry of Fµν .

e) We have now expressed Maxwell’s equations in tensor form. Show that conservation of charge, Jµ,µ = 0 is
implied by part c) above. (Hint: use the antisymmetry of Fµν .)

f) The charge density in any frame is J0. Therefore the total charge in spacetime is Q =
∫
J0dxdydz, where

the integral extends over an entire hypersurface t = constant. Defining d̃t = ñ, a unit normal for this
hypersurface, show that

Q =

∫
Jαnαdxdydz .

g) Use Gauss’s law and the result in part c) to show that the total energy enclosed within any closed two-surface
S in the hypersurface t = constant can be determined by doing an integral over S itself:

Q =

∮
S
F 0inidS =

∮
E · ndS ,

where n is the unit normal to S in the hypersurface (not the same as ñ in part f) above).

h) Perform a Lorentz transformation on Fµν to a frame Ō moving with velocity v in the x direction relative

to the frame used in part a) above. In this frame define a three-vector Ē with components Ēi = F 0̄ī, and
similarly for B̄ in analogy with a). In this way discover how E and B behave under a Lorentz transformation:
they get mixed together! Thus, E and B themselves are not Lorentz invariant, but are merely components of
F, called the Faraday tensor, which is the invariant description of electromagnetic fields in relativity. If you
think carefully, you will see that on physical grounds they cannot be invariant. In particular, the magnetic
field is created by moving charges; but a charge moving in one frame may be at rest in another, so a magnetic
field which exists in one frame may not exist in another. What is the same in all frames is the Faraday
tensor: only its components get transformed.
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