
Physics 509 Homework 1 Professor M. Stone

Spring 2023 University of Illinois

1 Index Gymnastics and Einstein Convention

Note that no distinction is made between raised and lowered indices in the problem.

(i) See (ii) with y→ x.

(ii) x · y = (xµêµ)(yν êν) = xµyν êµêν︸︷︷︸
=δµν

= xµyµ.

(iii) Note that δµνδνρ = 1 if and only if µ = ρ. This agrees with δµρ for all values of µ and ρ, hence

δµνδνρ = δµρ.

(iv) aµ = aν(êν · êµ) = aνδµν .

(v) δµµ =
∑3

i=1 1 = 3.

(a) Writing out both sides of the expression explicitly, one finds on the LHS

(AµBµ)(CνDν) = (a1b1 + a2b2 + a3b3)(c1d1 + c2d2 + c3d3)

= a1b1c1d1 + a1b1c2d2 + a1b1c3d3 + a2b2c1d1 + a2b2c2d2 + a2b2c3d3

+ a3b3c1d1 + a3b3c2d2 + a3b3c3d3,

whereas on the RHS,

(AµCν)(BµDν)

= a1c1b1d1 + a1c2b1d2 + a1c3b1d3 + a2c1b2d1 + a2c2b2d2 + a2c3b2d3

+ a3c1b3d1 + a3c2b3d2 + a3c3b3d3.

These expressions are clearly equal.

(b) Suppose Aµν = −Aµν and Bµν = Bνµ. Then writing out terms explicitly yields

AµνB
µν = a11b11 + a12b12 + a13b13 + a21b21 + a22b22 + a23b23 + a31b31 + a32b32 + a33b33.

Canceling all the diagonal terms since aii = −aii =⇒ aii = 0 for any i and replacing

aji = −aij and bji = bij whenever i < j yields

Aµν = a12b12 + a13b13 + a23b23 − a12b12 − a13b13 − a23b23 = 0.
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This can be shown more concisely by relabeling indices:

AµνB
µν µ↔ν7−−−→ AνµB

νµ = −AµνBµν =⇒ AµνB
µν = 0.

The last equality follows since simply relabelling indices should not change the result.

2 Antisymmetry

(a) It suffices to show that 123, 231, and 312 are all even permutations of 123:

123
id7−→ 123

123
(12)7−−→ 213

(23)7−−→ 231

123
(23)7−−→ 132

(12)7−−→ 312.

Each of these contain an even number of transpositions and are therefore even permutations:

ε123 = ε231 = ε312 = 1.

In contrast,

1234
(12)7−−→ 2134

(23)7−−→ 2314
(34)7−−→ 2341

contains an odd number of transpositions; therefore, ε1234 = −ε2341.

(b) First, note that only the relative permutations between unprimed and primed indices matters

since

εijkεi′j′k′ = sgn(σ) sgn(τ) = sgn(στ),

where σ and τ act on unprimed and primed indices respectively. Without loss of generality let

τ denote a permutation of the primed indices relative to ijk. Then

εijkεi′j′k′ =
∑
τ∈S3

sgn(τ)δiτ(i′)δjτ(j′)δkτ(k′)

= δii′δjj′δkk′ − δij′δji′δkk′ + δij′δjk′δki′ − δik′δjj′δki′

+ δik′δji′δkj′ − δii′δjk′δkj′ .

(c) Setting i = i′ in part (b) yields

εijkεij′k′ = δjj′δkk′ − δjk′δkj′ . (1)
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(d) The result from (b) clearly generalizes to

εijk`εi′j′k′`′ =
∑
τ∈S4

sgn(τ)δiτ(i′)δjτ(j′)δkτ(k′)δ`τ(`′).

Setting i = i′, we recover a similar result to that of part (b) (as expected):

εijk`εi′j′k′`′ = δii′δjj′δkk′ − δij′δji′δkk′ + δij′δjk′δki′ − δik′δjj′δki′ + δik′δji′δkj′ − δii′δjk′δkj′ .

3 Vector Products

(i) By definition, a · (b× c) = ak(εijkbicj) = εijkakbicj . This is clearly invariant under any even

permutation of indices which shows that

a · (b× c) = b · (c× a) = c · (a× b).

(ii) Plugging in the definition and using our earlier results,

a× (b× c) = a× (εijkbjckêi)

= εij′k′εijkak′bjckêj′

= (δjj′δkk′ − δjk′δkj′)ak′bjckêj′ (by (1))

= akckbj êj − ajbjckêk.

Expressing this in vector notation yields

a× (b× c) = b(a · c)− c(a · b). (2)

One should also be aware that the cross product is one of the few elementary operations

which is not associative, so that parenthesis are typically required to disambiguate expressions

containing multiple cross products; e.g.

(a× b)× c 6= a× (b× c).

(iii) Again, using index notation and previous identities,

(a× b) · (c× d) = (εijkajbkêi) · (εi′j′k′cj′dk′ êi′)

= (εijkajbk)(εij′k′cj′dk′) (êi · êi′ = δii′)

= (δjj′δkk′ − δjk′δkj′)ajbkcj′dk′ (by (1))

= ajbkcjdk − ajbkckdj .
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Figure 1: Definitions of arc lengths, angles, and vectors used in the derivation of the law of spherical
cosines. Note that the vectors u, w, and v are placed at the origin (center of the sphere) and are of
unit length.

Expressing this in vector notation yields

(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c). (3)

(iv) First consider the spherical law of cosines,

cos(c) = cos(a) cos(b) + sin(a) sin(b) cos(C), (4)

where the arc lengths (angles between the unit vectors), a, b, c, and angle C are shown in

figure 1. Using the familiar identities,

a · b = ab cos(θ) and |a× b| = ab sin(θ),

and making the formal substitutions a→ u, b→ v, c→ u, and d→ w (so our notation is

consistent with that in figure 1), the LHS of equation (3) can be written as

(u× v) · (u×w) = sin(a) sin(b) cos(C).

The RHS of equation (3) yields

(u · u)(v ·w)− (u · v)(u ·w) = cos(c)− cos(a) cos(b),

which rearranges to the desired result (equation (4)).
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The spherical law of sines is

sin(A)

sin(a)
=

sin(B)

sin(b)
=

sin(C)

sin(c)
, (5)

where a, b, and c are the arcs on the surface of the sphere (equivalently, the corresponding

angles between u, v, and w since the sphere is of unit radius) and A, B, and C are the spherical

angles opposite their respective arcs (e.g., the relationship between c and C is depicted in

figure 1).

Following the hint provided, we first prove the identity:

a · [(a× b)× (a× c)] = a · (b× c). (6)

Plugging in the definition of the cross-product,

a · [(a× b)× (a× c)] = a ·
[
(εijkajbkêi)× (εi′j′k′aj′bk′ êi′)

]
= a ·

[
ε`ii′εijkεi′j′k′ajbkaj′bk′ ê`

]
= ε`ii′εijkεi′j′k′a`ajbkaj′bk′

= (δi′jδ`k − δi′kδ`j)εi′j′k′a`ajbkaj′bk′ (by (1))

= εjj′k′akajaj′bkck′︸ ︷︷ ︸
∝(a×a)·c=0

−εkj′k′a`a`aj′bkck′︸ ︷︷ ︸
=εj′kk′aj′bkck′

= ai(εijkbjck) (relabelling indices).

Note, in the second to last line, a`a` = 1 since these are unit vectors. This establishes identity

(6).

We can also just plug into the identity established in part (ii),

a · [(a× b)× (a× c)] = a · [((a× b) · c)a− ((a× b) · a) c]

= (a× b) · c,

where in going to the last line we have used that a · a = 1 and (a× b) · a = 0.

Using this formula with a→ u, b→ v, and c→ w yields

u · [(u× v)× (u×w)] = u · (v ×w). (7)

Since we are in three dimensions with u perpendicular to both (u× v) and (u×w), then u

is parallel to the cross product (u× v)× (u×w) and hence we have no cosine term in the

product on the LHS. The RHS of (7) is invariant under even permutations of vectors (from
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part (i)). Hence, we can write

|(u× v)× (u×w)| = |(v ×w)× (v × u)| = |(w × u)× (w × v)|

=⇒ sin(a) sin(b) sin(C) = sin(a) sin(c) sin(B) = sin(b) sin(c) sin(A),

which reduces to the desired result, equation (5). Note that the angle between (u× v) and

(u×w), for example, is just C.

4 Bernoulli and Vector Products

Let’s first rewrite the expression u× (∇× v) in index notation.

u× (∇× v) = u× (εijk(∂ivj)êk)

= εi′j′k′ui′ (εijk(∂ivj)êk)j′ êk′

= εi′kk′εijkui′(∂ivj)êk′

= −εki′k′εkijui′(∂ivj)êk′ (re-order indices)

= −(δii′δjk′ − δik′δjk′)ui′(∂ivj)êk′ (by (1))

= uj(∂ivj)êi − ui(∂ivj)êj .

This expression is sometimes written using Feynman’s subscript notation,

u× (∇× v) = ∇v(u · v)− (u ·∇)v,

where ∇v acts only on the v coordinates to the right. Using 1
2∇v

2 = vi(∂jvi)êj , we can write

v × (∇× v) =
1

2
∇v2 − (v ·∇)v. (8)

Using this identity, Euler’s equation for fluid motion,

v̇ + (v ·∇)v = −∇h

becomes

v̇ − v × (∇× v) +
1

2
∇v2 = −∇h =⇒ v̇ − v × ω = −∇

(
1

2
v2 + h

)
,

where the final expression has been written in terms of the vorticity, ω = ∇× v.

For steady flow (v̇ = 0), the quantity 1
2v

2 + h is constant along streamlines since

−v · ∇
(

1

2
v2 + h

)
= v · (v × ω) = 0.
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5 Antisymmetry and Determinants

(a) Given the definition of the determinant,

det(A) = εj1j2...jnA1j1A2j2 . . . Anjn , (9)

relabel the indices by a permutation; i.e., by σ such that σ(k) = ik.

det(A) = εjσ(1)jσ(2)...jσ(n)Aσ(1)jσ(1)Aσ(2)jσ(2) . . . Aσ(n)jσ(n)

= εji1ji2 ...jinAi1ji1Ai2ji2 . . . Ainjin

= εi1i2...inεj1j2...jnAi1j1Ai2j2 . . . Ainjn .

In the last line, the double subscripts, jik terms, have been relabelled to jk terms. This leaves

the product of matrix elements unchanged while introducing a factor of εi1i2...in from reordering

the εji1ji2 ...jin term. This establishes the desired result,

εi1i2...in det(A) = εj1j2...jnAi1j1Ai2j2 . . . Ainjn . (10)

This result can be used to show the Cauchy-Binet formula, det(AB) = det(A) det(B).

det(AB) = εj1j2...jnA1k1Bk1j1A2k2Bk2j2 . . . AnknBknjn

= A1k1A2k2 . . . Ankn (εj1j2...jnBk1j1Bk2j2 . . . Bknjn)︸ ︷︷ ︸
=εk1k2...kn det(B)

(by (10))

= εk1k2...knA1k1A2k2 . . . Ankn︸ ︷︷ ︸
=det(A)

det(B) (by (9))

= det(A) det(B).

(b) We now repeat the above exercise but using the language of differential forms.

(i) Since V is n dimensional, {ω |ω : V n → C} forms a one-dimensional vector space over

C. Hence, there is only one form up to multiplicative constant. One should check for

themselves that the axioms for a vector space are indeed satisfied by the space of forms.

We will choose this constant in what follows by the action of the form on the standard

basis, {êk}, by demanding that ω(ê1, ê2, . . . , ên) = 1.

More directly, you can also use the skew-symmetric and n-linearity to write any such

form as a determinant times its evaluation on the standard basis (see below). Since the

evaluation of the form on the standard basis is unity, this uniquely determines the form

up to a multiplicative constant.
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(ii) Now we want to show {xk}nk=1 are linearly independent if and only if ω(x1, . . . ,xn) 6= 0.

Or equivalently, {xk}nk=1 linearly dependent if and only if ω(x1, . . . ,xn) = 0 (this is just

the contrapositive). For convenience of notation, write x1 as x(1).

( =⇒ ) First, suppose ω(x(1),x(2), . . . ,x(n)) = 0. The goal here is to reduce the evaluation

of the form on the vectors {xk} to an expression containing the evaluation of the form on

only the standard basis, which we have already specified. Define the matrix

X = (x(1) x(2) . . . x(n)).

Then,

ω(x(1),x(2), . . . ,x(n)) = ω(x
(1)
k1

êk1 , x
(2)
k2

êk2 , . . . , x
(n)
kn

êkn)

= x
(1)
k1
x
(2)
k2
. . . x

(n)
kn
ω(êk1 , êk2 , . . . , êkn)

= εk1k2...knx
(1)
k1
x
(2)
k2
. . . x

(n)
kn︸ ︷︷ ︸

=det(X)

ω(ê1, ê2, . . . , ên)︸ ︷︷ ︸
=1

.

This shows that if ω(x(1),x(2), . . . ,x(n)) = 0 then det(X) = 0 which implies that {xk}nk=1

are linearly dependent.

(⇐= ) Conversely, if {xk}nk=1 are linearly dependent then, without loss of generality, we

can write x1 =
∑n

k=2 ckxk for some coefficients ck. Then

ω(x1,x2, . . . ,xn) =
n∑
k=2

ckω(xk,x2, . . . ,xn) = 0.

Every term in the sum is zero since the (antisymmetric) form contains repeated elements;

hence, the sum is identically zero.

Now define the determinant of the linear map A : V → V by

(detA)ω(x1,x2, . . . ,xn) = ω(Ax1,Ax2, . . . ,Axn). (11)

Writing everything in terms of the standard basis, x(k) = x
(k)
i êi, Ax(k) = Aijx

(k)
j êi, and using

ω(ê1, ê2, . . . , ên) = 1, one finds

ω(x(1),x(2), . . . ,x(n)) = ω(x
(1)
j1

êj2 , x
(2)
j2

êj2 , . . . , x
(n)
jn

êjn)

= x
(1)
j1
x
(2)
j2
. . . x

(n)
jn
ω(êj2 , êj2 , . . . , êjn) (ω is multilinear)

= εj1j2...jnx
(1)
j1
x
(2)
j2
. . . x

(n)
jn
ω(ê1, ê2, . . . , ên)︸ ︷︷ ︸

=1

(by skew-symmetry).
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Similarly,

ω(Ax1,Ax2, . . . ,Axn) = ω(Ai1j1x
(1)
j1

êi1 , Ai2j2x
(2)
j2

êi2 , . . . , Ainjnx
(n)
jn

êin)

= Ai1j1x
(1)
j1
Ai2j2x

(2)
j2
. . . Ainjnx

(n)
jn
ω(êi1 , êi2 , . . . , êin)

= εi1i2...inAi1j1Ai2j2 . . . Ainjnx
(1)
j1
x
(2)
j2
. . . x

(n)
jn
ω(ê1, ê2, . . . , ên)︸ ︷︷ ︸

=1

.

Using these expressions in equation (11) reduces to

det(A) = εi1i2...inεj1j2...jnAi1j1Ai2j2 . . . Ainjn ,

which agrees with equation (10).

The proof of the Cauchy-Binet formula is now trivial:

(detA)(detB)ω(x1,x2, . . . ,xn) = (detA)ω(Bx1,Bx2, . . . ,Bxn)

= ω(ABx1,ABx2, . . . ,ABxn)

= (detAB)ω(x1,x2, . . . ,xn).
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