Physics 509 Homework 1 Professor M. Stone
Spring 2023 University of Illinois

1 Index Gymnastics and Einstein Convention

Note that no distinction is made between raised and lowered indices in the problem.

See (ii) with y — x.

x -y = (ahey)(y &) = aty” &,8, = ahy,.
6
=

Note that 6,,,0,, = 1 if and only if x = p. This agrees with 4, for all values of ;1 and p, hence

O Ovp = Opp-
a, = ay(€y, - €,) = a,u.

5## = Z?:l 1=3.

Writing out both sides of the expression explicitly, one finds on the LHS

(A“BH)(CVDV) = (a1b1 + agby + agbg)(01d1 + ecadsy + ngg)
= arbicidi + a1bicada + arbicads + asbacidy + asbacads + azbacsds
+ agbscidy + agbscads + azbscsds,

whereas on the RHS,

(A"C”)(BuDy)
= ajcibidy + a1cabida + arc3bids + azcibady + azcabads + azczbads
+ azcibzdy + azcabsds + azcsbsds.

These expressions are clearly equal.

Suppose A, = —A,, and B*" = B"/. Then writing out terms explicitly yields
A B" = a11bi1 + arebiz + a13b13 4 a21ba1 + agabao + azzbaz + azibs1 + asabsa + aszbss.

Canceling all the diagonal terms since a;; = —a; = a; = 0 for any ¢ and replacing

aj; = —0aj and bji = bij whenever i < j yields

Auy = a12b12 + a13b13 + ag3baz — a12b12 — a13b13 — azzbaz = 0.



This can be shown more concisely by relabeling indices:
A BR 22 AL BV = —A,,BY — A,,B" =0.

The last equality follows since simply relabelling indices should not change the result.

2 Antisymmetry

(a)

()

It suffices to show that 123, 231, and 312 are all even permutations of 123:

123 44 193

123 22, 913 ), 933

23 12
123 2%, 139,02, 319
Each of these contain an even number of transpositions and are therefore even permutations:
€123 = €231 = €312 = L.

In contrast,

(12) (23) (34)

1234 + 2134 —= 2314 + 2341

contains an odd number of transpositions; therefore, €1934 = —€9341.

First, note that only the relative permutations between unprimed and primed indices matters

since

€ijk€ilj k! = sgn(o)sgn(r) = sgn(o7),

where o and 7 act on unprimed and primed indices respectively. Without loss of generality let

7 denote a permutation of the primed indices relative to ijk. Then

Cijcigi = D SE(T)8ir (i) 07 (1) Okr (k)
TES3

= 0410/ Ok — 041 0ir Opeher + 03t O Ot — O 0 Ot
+ Ok 0jir Okjr — Oiir O O

Setting ¢ = ¢ in part (b) yields

€ijk€ijrk = 041 Okks — OjrrOpjr- (1)



(d) The result from (b) clearly generalizes to

€ijke€il k0 = Z Sgﬂ(7)5i7(i')5j7(j')5kr(k’)557(€’)'
TESY

Setting i = 4’, we recover a similar result to that of part (b) (as expected):

€ijke€i 1kt = 04t 05 Opky — 041 0jir Oy =+ 03t O s Opir — O 05 Ot + Qs Ot Opejr — Ozir O jer O -

3 Vector Products

(i) By definition, a - (b x ¢) = ax(€;jrbicj) = €jrarbic;. This is clearly invariant under any even

permutation of indices which shows that

a-(bxc)=b-(cxa)=c-(axb).

(ii) Plugging in the definition and using our earlier results,

a X (b X C) =axXx (eijkbjckéi)
= Ez‘j/kIGijkak/bjCkéj/
= (5jj’5k’k’ — 5jk/5kj/)ak/bjckéj/ (by (1))

= aicrbjé; — ajbjcrey.
Expressing this in vector notation yields

ax (bxc)=b(a-c)—c(a-b). (2)

One should also be aware that the cross product is one of the few elementary operations
which is not associative, so that parenthesis are typically required to disambiguate expressions

containing multiple cross products; e.g.

(axb)xc#ax(bxc).

(iii) Again, using index notation and previous identities,

(a X b) . (C X d) = (€ijajbké2) . (ei’j’k’cj’dk'éi’)
(€ijrajbr)(€ijinrcirdpr) (& - &y = i)
(857 Okkr — Ojkr Ongr )ajbicjrdy (by (1))

ajbijdk — ajbkckdj.



Figure 1: Definitions of arc lengths, angles, and vectors used in the derivation of the law of spherical
cosines. Note that the vectors u, w, and v are placed at the origin (center of the sphere) and are of
unit length.

Expressing this in vector notation yields

(axb)-(cxd)=(a-c)(b-d)—(a-d)(b-c). (3)

(iv) First consider the spherical law of cosines,
cos(c) = cos(a) cos(b) + sin(a) sin(b) cos(C), (4)

where the arc lengths (angles between the unit vectors), a, b, ¢, and angle C' are shown in

figure 1. Using the familiar identities,
a-b=abcos(d) and |ax b|=absin(d),

and making the formal substitutions a — u, b — v, ¢ — u, and d — w (so our notation is

consistent with that in figure 1), the LHS of equation (3) can be written as
(uxv)-(uxw)=sin(a)sin(b) cos(C).
The RHS of equation (3) yields
(u-u)(v-w)—(u-v)(u-w) = cos(c) — cos(a) cos(b),

which rearranges to the desired result (equation (4)).



The spherical law of sines is

sin(A) _ sin(B) _ sin(C')
sin(a)  sin(b)  sin(c)

: (5)

where a, b, and ¢ are the arcs on the surface of the sphere (equivalently, the corresponding
angles between u, v, and w since the sphere is of unit radius) and A, B, and C are the spherical
angles opposite their respective arcs (e.g., the relationship between ¢ and C is depicted in
figure 1).

Following the hint provided, we first prove the identity:
a-[(axb)x(axc)=a-(bxc). (6)
Plugging in the definition of the cross-product,

a-[(axb)x(axc)=a-[(exabpé;) X (€ijrajbpéy)]
=a- e €ijrei i ajbpa;byé]
= €4y €ijkEi jk A bRy b
= (6irj0or — Girk0ez)€irjrr apajbraj by (by (1))

= €'k Ak ;A by Crr —€pjrpr apagag bycys

x(axa)-c=0 =€/ ot 1 brCry

= a;(€;jbjcr) (relabelling indices).

Note, in the second to last line, agay = 1 since these are unit vectors. This establishes identity

(6).

We can also just plug into the identity established in part (ii),

a-[(axb)x(axc)=a-[((axb)-cja—((axb)-a)c]|
= (axb)-c,

where in going to the last line we have used that a-a =1 and (a x b)-a=0.
Using this formula with a — u, b — v, and ¢ — w yields
u-f(uxv)x (uxw)=u-(vxw). (7)

Since we are in three dimensions with u perpendicular to both (u x v) and (u x w), then u
is parallel to the cross product (u x v) x (u x w) and hence we have no cosine term in the

product on the LHS. The RHS of (7) is invariant under even permutations of vectors (from



part (i)). Hence, we can write

[(uxv)x (uxw)|=|(vxw)x(vxu)=|[wxu)x(wxv)|
= sin(a) sin(b) sin(C) = sin(a) sin(c) sin(B) = sin(b) sin(c) sin(A),
which reduces to the desired result, equation (5). Note that the angle between (u x v) and

(u x w), for example, is just C.

4 Bernoulli and Vector Products

Let’s first rewrite the expression u x (V X v) in index notation.

u x (V xv)=ux (g;i(0v;)ér)
= €ty (€ijk(0iv;)€r) ;r €xr
= €irkk €ijkUir (0707) €
= —€kiks Ekiji (0705) €y (re-order indices)
= (04310 — Oipr Ot uir (0305 g (by (1))

= u;(0;v;)€&; — ui(0v;)é;.
This expression is sometimes written using Feynman’s subscript notation,
ux (Vxv)=Vy(u-v)—(u-V)v,
where V, acts only on the v coordinates to the right. Using %Vv2 = v;(0;v;)€;, we can write

vx(Vxv)= %Vv2 —(v-V)v. (8)

Using this identity, Euler’s equation for fluid motion,
v+ (v-V)v=-Vh
becomes

1 1
V—VX(VXV)—I—§Vv2:—Vh — V—vxw:—V<2v2+h),

where the final expression has been written in terms of the vorticity, w =V x v.

For steady flow (v = 0), the quantity %VZ + h is constant along streamlines since

1
—V-V<2v2+h>:v~(vxw):0.



5 Antisymmetry and Determinants

(a) Given the definition of the determinant,
det(A) = €j1j2...jnA1j1A2j2 e Anjna (9)
relabel the indices by a permutation; i.e., by o such that o(k) = ig.

det(A) = E.jo'(l)jo'(Q)"'.jo'(’n)AU(I)jU(I)AU(Q)jU(Q) s AU(n)ja(n)
A A

= €y Gigerdin Airjoy Aizgiy - - - Aingion

= €irig..in€jijo...jn Airji Ainga - - Aijin-

In the last line, the double subscripts, j;, terms, have been relabelled to jj terms. This leaves
the product of matrix elements unchanged while introducing a factor of €;,;,. ;, from reordering

the €j, j,,..j;, term. This establishes the desired result,

€irig...in ACL(A) = €515y jn Airjs Ay + - A - (10)

This result can be used to show the Cauchy-Binet formula, det(AB) = det(A) det(B).

det(AB) = €j,j5...5, A1k, Bryjs A2ky Brogy - - - Ankey B

= Aig, Aoty - - Anier, (€510 5 Brji Brojo - - - Bl (by (10))
i det(B)
= Chyky..kn Alky A2ky - - - Ank,, det(B) (by (9))
—det(A)
= det(A) det(B).

(b) We now repeat the above exercise but using the language of differential forms.

(i) Since V is n dimensional, {w|w : V" — C} forms a one-dimensional vector space over
C. Hence, there is only one form up to multiplicative constant. One should check for
themselves that the axioms for a vector space are indeed satisfied by the space of forms.
We will choose this constant in what follows by the action of the form on the standard

basis, {€;}, by demanding that w(é1,é2,...,€,) = 1.

More directly, you can also use the skew-symmetric and n-linearity to write any such
form as a determinant times its evaluation on the standard basis (see below). Since the
evaluation of the form on the standard basis is unity, this uniquely determines the form

up to a multiplicative constant.



(ii) Now we want to show {x}}_, are linearly independent if and only if w(x1,...,x,) # 0.
Or equivalently, {x;}}_; linearly dependent if and only if w(xi,...,x,) = 0 (this is just

the contrapositive). For convenience of notation, write x; as x(1.

( =) First, suppose w(x(l), x . ,x(”)) = 0. The goal here is to reduce the evaluation
of the form on the vectors {x*} to an expression containing the evaluation of the form on

only the standard basis, which we have already specified. Define the matrix

X = (xM x@ . xM),

Then,
14 2) A .
w(x(l),X(Q), . ,X(")) = w(wél)ekl,xge@, el x,(cz)ekn)
D (2 A .
= wél)xgﬁ) .. .xl(gz)w(ekl,eky e er)
= Eklkg...kn$]gll)$§€22) e .legz) w(él, ég, ce ,én) .
=det(X) =1

This shows that if w(xM,x® ... x(™) = 0 then det(X) = 0 which implies that {x;}?_,

are linearly dependent.

( <) Conversely, if {x;}}_, are linearly dependent then, without loss of generality, we

can write x; = Y ,_, ;X for some coefficients ¢,. Then
n
w(x1,Xg,...,Xp) = E crw(Xg, X2, ..., Xp) = 0.
k=2

Every term in the sum is zero since the (antisymmetric) form contains repeated elements;

hence, the sum is identically zero.

Now define the determinant of the linear map A:V — V by

(det A) w(x1,x2,...,X,) = w(Ax1, AXg,...,AXxy,). (11)
Writing everything in terms of the standard basis, x*) = :cgk)éi, Ax®) = Aijaz§-k)éi, and using
w(éy,é2,...,€,) =1, one finds
w(x(l),x@), e ,X(")) = w(xg)éij;z)éjz, e ,x§:)éjn)
= 2z x(n)w(é- é; &) (w is multilinear)
=z wn) oz W@y, 8, ., 8,
= ejljZ,,,jnxﬁ)xg) . xg:) w(éy,es,...,6,) (by skew-symmetry).

=1



Similarly,

OP (2) 4 () 4
w(Axl, AXQ, e ,AXn) = w(Ailjlle eil,Aimxh (S P Ainjn‘,rjn ein)
_ ) 2) O NPIIP 5
= Ailjlle AiszSL‘jQ . Ainjnxjn w(eil,eiz, . ,ein)

_ 1),.(2) M), (a & 5
= €i1i2...inAi1j1Ai2j2 ce Ainjnl‘jl IjQ . .Tjn w(el, €o, ... ,en) .

=1
Using these expressions in equation (11) reduces to
det(A) = €iiy.. i €1ja...jn Airgy Ainga - -+ Ainins

which agrees with equation (10).
The proof of the Cauchy-Binet formula is now trivial:
(det A)(det B)w(x1,x2,...,X,) = (det A)w(Bx1, Bxa,...,Bxy,)

= w(ABx;, ABxy,...,ABx,)
= (det AB)w(x1,X2,...,Xp).
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