Midterm Exam 2 Formula Sheet

April. 4, 2023

Reference formulae

Time-dependent Schrödinger equation: $i \hbar \frac{\partial}{\partial t} \psi(x, t)=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \psi(x, t)+V(x, t) \psi(x, t)$
Normalization: $\int_{-\infty}^{\infty} d x|\psi(x, t)|^{2}=1$
Expectation values: $\langle\mathcal{O}\rangle=\int_{-\infty}^{\infty} d x \psi^{*}(x, t) \mathcal{O} \psi(x, t)$
standard deviation $\sigma: \sigma_{\mathcal{O}}^{2}=\left\langle\mathcal{O}^{2}\right\rangle-\langle\mathcal{O}\rangle^{2}$
Time-independent Schrödinger equation: $H \psi_{n}(x)=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \psi_{n}(x)+V(x) \psi_{n}(x)=E_{n} \psi_{n}(x)$
$\psi(x, t)=\sum_{n} c_{n} \psi_{n}(x) e^{-i E_{n} t / \hbar}$
Orthonormality: $\int_{-\infty}^{\infty} d x \psi_{m}^{*}(x) \psi_{n}(x)=\delta_{m n}$

Operators: momentum $p \leftrightarrow-i \hbar \frac{\partial}{\partial x}$; position $x \leftrightarrow x$; Hamiltonian $H \leftrightarrow p^{2} / 2 m+V(x, t)$
Commutator $[A, B]=A B-B A ;[x, p]=i \hbar$
Uncertainty $\sigma_{A}^{2} \sigma_{B}^{2} \geq\left(\frac{1}{2 i}\langle[A, B]\rangle\right)^{2}$
$\frac{d}{d t}\langle Q\rangle=(i / \hbar)\langle[H, Q]\rangle+\langle\partial Q / \partial t\rangle$
Infinite square well, $V(x)=0$ for $0<x<L, V(x)=\infty$ elsewhere:
$\psi_{n}(x)=\sqrt{\frac{2}{L}} \sin (n \pi x / L), E_{n}=\frac{\hbar^{2}}{2 m}\left(\frac{\pi n}{L}\right)^{2}$
Free particle, $V=0$. Momentum eigenstates $\psi_{k}(x)=\frac{1}{\sqrt{2 \pi}} e^{i k x}$
Continuum orthonormality, $\int_{-\infty}^{\infty} d x \psi_{k_{1}}^{*}(x) \psi_{k_{2}}(x)=\delta\left(k_{1}-k_{2}\right)$

Integrals: Gaussian, $\int_{-\infty}^{\infty} d x e^{-\left(\alpha x^{2}+\beta x\right)}=\sqrt{\pi / \alpha} e^{\beta^{2} / 4 \alpha}$ for $\operatorname{Re} \alpha>0$
$\int_{-\infty}^{\infty} d x x^{2} e^{-\alpha x^{2}}=\sqrt{\pi / 4 \alpha^{3}}$
Delta function, $\delta(x)=0$ for $x \neq 0, \infty$ for $x=0, \int_{-\infty}^{\infty} d x \delta(x-a) f(x)=f(a)$
Fourier transform: $f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k \tilde{f}(k) e^{i k x}, \tilde{f}(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d x f(x) e^{-i k x}$
Simple harmonic oscillator, $V(x)=\frac{1}{2} m \omega^{2} x^{2}$: define $x_{0}^{2} \equiv \hbar / m \omega$, then
$\psi_{n}(x)=A_{n} e^{-x^{2} / 2 x_{0}^{2}} H_{n}\left(x / x_{0}\right), A_{n}=\left(2^{n} n!x_{0} \sqrt{\pi}\right)^{-1 / 2}$, Hermite polynomials $H_{n}(y): H_{0}(y)=1$
$H_{1}(y)=2 y, H_{2}(y)=4 y^{2}-2, H_{3}(y)=8 y^{3}-12 y, H_{4}(y)=16 y^{4}-48 y^{2}+12$
$E_{n}=(n+1 / 2) \hbar \omega$
Raising and lowering operators,

$$
a=\frac{1}{\sqrt{2}}\left(\frac{x}{x_{0}}+i \frac{x_{0} p}{\hbar}\right), \quad a^{\dagger}=\frac{1}{\sqrt{2}}\left(\frac{x}{x_{0}}-i \frac{x_{0} p}{\hbar}\right), \quad\left[a, a^{\dagger}\right]=1
$$

Laplacian in spherical coordinates:

$$
\nabla^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}
$$

Angular momentum operators
Commutation relations: $\left[L_{x}, L_{y}\right]=i \hbar L_{z},\left[L_{y}, L_{z}\right]=i \hbar L_{x},\left[L_{z}, L_{x}\right]=i \hbar L_{y},\left[L_{z}, L^{2}\right]=0$
In spherical coordinates:

$$
L^{2}=-\hbar^{2}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right] \quad L_{z}=-i \hbar \frac{\partial}{\partial \phi}
$$

Raising and lowering operators,

$$
L_{ \pm}=L_{x} \pm i L_{y}=\hbar e^{ \pm i \phi}\left(i \cot \theta \frac{\partial}{\partial \phi} \pm \frac{\partial}{\partial \theta}\right), \quad\left[L_{z}, L_{ \pm}\right]= \pm \hbar L_{ \pm}
$$

First few spherical harmonics:

$$
\begin{gathered}
Y_{00}=\sqrt{\frac{1}{4 \pi}} \quad Y_{1 \pm 1}=\mp \sqrt{\frac{3}{8 \pi}} \sin \theta e^{ \pm i \phi} \quad Y_{10}=\sqrt{\frac{3}{4 \pi}} \cos \theta \\
Y_{2 \pm 2}=\sqrt{\frac{15}{32 \pi}} \sin ^{2} \theta e^{ \pm 2 i \phi} \quad Y_{2 \pm 1}=\mp \sqrt{\frac{15}{8 \pi}} \sin \theta \cos \theta e^{ \pm i \phi} \quad Y_{20}=\sqrt{\frac{5}{16 \pi}}\left(3 \cos ^{2} \theta-1\right)
\end{gathered}
$$

Midterm 2

Problem 1 - Finite dimensional Hilbert space [25 pts]

Consider a Hilbert space consisting of three orthonormal states $\{|1\rangle,|2\rangle,|3\rangle\}$
(a) A linear operator is defined on this Hilbert space:

$$
\begin{equation*}
Z|1\rangle=-|2\rangle+|3\rangle \quad Z|2\rangle=-|1\rangle+|3\rangle \quad Z|3\rangle=|3\rangle \tag{1}
\end{equation*}
$$

write a matrix representation of this operator.
(b) Find Z^{\dagger} by giving expressions for $Z^{\dagger}|1\rangle, Z^{\dagger}|2\rangle, Z^{\dagger}|3\rangle$.
(c) The system is prepared in the state $\frac{1}{\sqrt{3}}(|1\rangle+|2\rangle-i|3\rangle)$. An unspecified observable is measured and found to be some definite [unspecified] value. Directly after the measurement the system has collapsed to the state $\frac{1}{\sqrt{2}}(|1\rangle+|3\rangle)$. What was the probability of this measurement outcome?

Problem 2 - Simple Harmonic Oscillator [25 pts]

A simple harmonic oscillator is prepared in the initial state:

$$
\begin{equation*}
|\psi\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \tag{2}
\end{equation*}
$$

where $|n\rangle$ are eigenstates of the number operator \hat{N}.
(a) Compute the average "occupation" $=\langle\psi| \hat{N}|\psi\rangle$. What is the average energy of the SHO?
(b) Use creation and annihilation operators to compute $\langle\psi| \hat{x}|\psi\rangle$
(c) [This problem requires little to no algebra] Consider the state $\propto a^{\dagger} a a^{\dagger} a^{\dagger} a a^{\dagger}|0\rangle$. The proportionality constant is unspecified but needed to make this state normalized. A measurement of the energy is made on this state, what are the possible outcomes? What can you say about the state $\propto a^{\dagger} a a a^{\dagger} a a^{\dagger}|0\rangle$?

Problem 3-Angular momentum [25 pts]

Consider a particle on a sphere specified by the angles (θ, ϕ) used in spherical coordinates. The particle is in some state $|\psi\rangle$
(a) The angular momentum L_{z}, L^{2} are simultaneously measured and the state collapses to $|\ell, m\rangle$ for integer ℓ, m. Write an algebraic expression for the probability of this outcome - firstly use the abstract Hilbert space langauge and secondly use the position basis representation where $\langle\theta, \phi \mid \psi\rangle=\psi(\theta, \phi)$.
(b) The value of L^{2} is measured to be $12 \hbar^{2}$. What are the possible values of L_{z} ?
(c) Compute the commutator of $\frac{1}{\sqrt{2}}\left(L_{x}+L_{y}\right)$ and $L_{x}^{2}+L_{y}^{2}$.

