Midterm Exam 2 Formula Sheet

April. 4, 2023

Reference formulae

Time-dependent Schrödinger equation: $i\hbar \frac{\partial}{\partial t}\psi(x,t) = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi(x,t) + V(x,t)\psi(x,t)$ Normalization: $\int_{-\infty}^{\infty} dx |\psi(x,t)|^2 = 1$ Expectation values: $\langle \mathcal{O} \rangle = \int_{-\infty}^{\infty} dx \psi^*(x,t)\mathcal{O}\psi(x,t)$ standard deviation σ : $\sigma_{\mathcal{O}}^2 = \langle \mathcal{O}^2 \rangle - \langle \mathcal{O} \rangle^2$ Time-independent Schrödinger equation: $H\psi_n(x) = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi_n(x) + V(x)\psi_n(x) = E_n\psi_n(x)$ $\psi(x,t) = \sum_n c_n\psi_n(x)e^{-iE_nt/\hbar}$ Orthonormality: $\int_{-\infty}^{\infty} dx \psi_m^*(x)\psi_n(x) = \delta_{mn}$

Operators: momentum $p \leftrightarrow -i\hbar \frac{\partial}{\partial x}$; position $x \leftrightarrow x$; Hamiltonian $H \leftrightarrow p^2/2m + V(x,t)$ Commutator [A, B] = AB - BA; $[x, p] = i\hbar$ Uncertainty $\sigma_A^2 \sigma_B^2 \ge \left(\frac{1}{2i}\langle [A, B] \rangle\right)^2$ $\frac{d}{dt}\langle Q \rangle = (i/\hbar)\langle [H, Q] \rangle + \langle \partial Q/\partial t \rangle$ Infinite square well, V(x) = 0 for 0 < x < L, $V(x) = \infty$ elsewhere: $\psi_n(x) = \sqrt{\frac{2}{L}} \sin(n\pi x/L), E_n = \frac{\hbar^2}{2m} (\frac{\pi n}{L})^2$

Free particle, V = 0. Momentum eigenstates $\psi_k(x) = \frac{1}{\sqrt{2\pi}} e^{ikx}$ Continuum orthonormality, $\int_{-\infty}^{\infty} dx \, \psi_{k_1}^*(x) \psi_{k_2}(x) = \delta(k_1 - k_2)$

Integrals: Gaussian, $\int_{-\infty}^{\infty} dx \, e^{-(\alpha x^2 + \beta x)} = \sqrt{\pi/\alpha} \, e^{\beta^2/4\alpha}$ for $\operatorname{Re} \alpha > 0$ $\int_{-\infty}^{\infty} dx \, x^2 e^{-\alpha x^2} = \sqrt{\pi/4\alpha^3}$ Delta function, $\delta(x) = 0$ for $x \neq 0$, ∞ for x = 0, $\int_{-\infty}^{\infty} dx \, \delta(x-a) f(x) = f(a)$ Fourier transform: $f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dk \tilde{f}(k) e^{ikx}$, $\tilde{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx f(x) e^{-ikx}$

Simple harmonic oscillator, $V(x) = \frac{1}{2}m\omega^2 x^2$: define $x_0^2 \equiv \hbar/m\omega$, then $\psi_n(x) = A_n e^{-x^2/2x_0^2} H_n(x/x_0), A_n = (2^n n! x_0 \sqrt{\pi})^{-1/2}$, Hermite polynomials $H_n(y)$: $H_0(y) = 1$ $H_1(y) = 2y, H_2(y) = 4y^2 - 2, H_3(y) = 8y^3 - 12y, H_4(y) = 16y^4 - 48y^2 + 12$ $E_n = (n + 1/2)\hbar\omega$

Raising and lowering operators,

$$a = \frac{1}{\sqrt{2}} \left(\frac{x}{x_0} + i \frac{x_0 p}{\hbar} \right), \qquad a^{\dagger} = \frac{1}{\sqrt{2}} \left(\frac{x}{x_0} - i \frac{x_0 p}{\hbar} \right), \qquad [a, a^{\dagger}] = 1$$

Laplacian in spherical coordinates:

$$\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2}$$

Angular momentum operators

Commutation relations: $[L_x, L_y] = i\hbar L_z$, $[L_y, L_z] = i\hbar L_x$, $[L_z, L_x] = i\hbar L_y$, $[L_z, L^2] = 0$ In spherical coordinates:

$$L^{2} = -\hbar^{2} \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} \right] \qquad L_{z} = -i\hbar \frac{\partial}{\partial \phi}$$

Raising and lowering operators,

$$L_{\pm} = L_x \pm iL_y = \hbar e^{\pm i\phi} \left(i \cot \theta \frac{\partial}{\partial \phi} \pm \frac{\partial}{\partial \theta} \right), \qquad [L_z, L_{\pm}] = \pm \hbar L_{\pm}$$

First few spherical harmonics:

$$Y_{00} = \sqrt{\frac{1}{4\pi}} \qquad Y_{1\pm 1} = \mp \sqrt{\frac{3}{8\pi}} \sin \theta e^{\pm i\phi} \qquad Y_{10} = \sqrt{\frac{3}{4\pi}} \cos \theta$$
$$Y_{2\pm 2} = \sqrt{\frac{15}{32\pi}} \sin^2 \theta e^{\pm 2i\phi} \qquad Y_{2\pm 1} = \mp \sqrt{\frac{15}{8\pi}} \sin \theta \cos \theta e^{\pm i\phi} \qquad Y_{20} = \sqrt{\frac{5}{16\pi}} (3\cos^2 \theta - 1)$$

Midterm 2

Problem 1 - Finite dimensional Hilbert space [25 pts]

Consider a Hilbert space consisting of three orthonormal states $\{|1\rangle, |2\rangle, |3\rangle\}$

(a) A linear operator is defined on this Hilbert space:

$$Z|1\rangle = -|2\rangle + |3\rangle$$
 $Z|2\rangle = -|1\rangle + |3\rangle$ $Z|3\rangle = |3\rangle$ (1)

write a matrix representation of this operator.

- (b) Find Z^{\dagger} by giving expressions for $Z^{\dagger} |1\rangle, Z^{\dagger} |2\rangle, Z^{\dagger} |3\rangle$.
- (c) The system is prepared in the state $\frac{1}{\sqrt{3}}(|1\rangle + |2\rangle i |3\rangle)$. An unspecified observable is measured and found to be some definite [unspecified] value. Directly after the measurement the system has collapsed to the state $\frac{1}{\sqrt{2}}(|1\rangle + |3\rangle)$. What was the probability of this measurement outcome?

Problem 2 - Simple Harmonic Oscillator [25 pts]

A simple harmonic oscillator is prepared in the initial state:

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \tag{2}$$

where $|n\rangle$ are eigenstates of the number operator \hat{N} .

- (a) Compute the average "occupation" = $\langle \psi | \hat{N} | \psi \rangle$. What is the average energy of the SHO?
- (b) Use creation and annihilation operators to compute $\langle \psi | \hat{x} | \psi \rangle$
- (c) [This problem requires little to no algebra] Consider the state $\propto a^{\dagger}aa^{\dagger}a^{\dagger}a^{\dagger}|0\rangle$. The proportionality constant is unspecified but needed to make this state normalized. A measurement of the energy is made on this state, what are the possible outcomes? What can you say about the state $\propto a^{\dagger}aaa^{\dagger}aa^{\dagger}|0\rangle$?

Problem 3 - Angular momentum [25 pts]

Consider a particle on a sphere specified by the angles (θ, ϕ) used in spherical coordinates. The particle is in some state $|\psi\rangle$

- (a) The angular momentum L_z, L^2 are simultaneously measured and the state collapses to $|\ell, m\rangle$ for integer ℓ, m . Write an algebraic expression for the probability of this outcome firstly use the abstract Hilbert space langauge and secondly use the position basis representation where $\langle \theta, \phi | \psi \rangle = \psi(\theta, \phi)$.
- (b) The value of L^2 is measured to be $12\hbar^2$. What are the possible values of L_z ?
- (c) Compute the commutator of $\frac{1}{\sqrt{2}}(L_x + L_y)$ and $L_x^2 + L_y^2$.