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Abstract

NPT Monte Carlo simulation is implemented to study the transition
temperature of pure zirconium HPC to BCC phase transformation at
hight temperature and low pressure.Burgers transformation is used to
minimize crystal shearing e�ect that inhibits solid-solid phase transfor-
mation. The pair correlation function and the structure factor are cal-
culated at room temperature for a transformation from random intial
con�guration to HCP lattice when calculating c/a value is nontrivial.
We calculate free energy to locate the transition temperature. This
is compared to the experimental value and the molecular dynamics
simulation of 1233 K[2].

1 Introduction

We are interested in phase diagram of Zirconium-based systems. The phase
diagram is a road map to alloy design and development. Zirconium based
alloy is useful in many mission-critical applications for example: using it as
cladding material for nuclear fuse and reactor and thermal barrier coating
for turbine blades. The reliable phase-equilibrium data at high temperature
of such systems is di�cult to obtained using conventional experimental tech-
niques. In the present work we will use Metropolis Monte Carlo method
to investigate the phase boundary of solid-solid Hexagonal Closed Packed
(HCP) phase to Body Centered Cubic (BCC) phase transition for pure zir-
conium metal. Speci�cally in this paper we will use the isothermal-isobaric



2

Monte Carlo simulation to study the HCP(α phase) to BCC(β phase) tran-
sition at high temperature. The area of interest is near the y-axis in the T-P
phase diagram as shown in �g.1. This paper has four sections. In the next
section, the theory and basic building blocks of our simulation are discussed.
In section III, we will discuss about our results. Finally in section IV, we
will summarize our �ndings.

Figure 1: The phase diagram of pure zirconium metal in pressure-
temperature plane. The area in the phase diagram explored in this paper is
the low pressure-high temperature α to β phase transformation.[1]

2 Theory

There are some theoretical concepts we need to discuss before we can start
on the simulation. These are potential, The algorithm for doing isothermal-
isobaric Monte Carlo moves(NPT Monte Carlo), and free energy calculation.
In the next subsection, a brief description of the potential used is given.

2.1 Embedded Atom Potential

Since there are delocalized electrons in metal, the usual pair potential is
an inadequate description. Finding an appropriate potential for metal is
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nontrivial. In this project, we apply the potential used in molecular dynamics
to calculate the potential for our Monte Carlo moves. The most general
empirical potential used is the embedded atom model potential. The insight
for constructing EAM potential can be gained by consider the pudding model
for metal. Each atom has two types of potential energy. The �rst one is due to
the pair potential between atoms. the second one is the force exerted on the
atomic nucleus due to the averaged con�guration of the electron cloud. The
second term is parameterized by a pairwise function: the density function.
The total energy in EAM is:

Utot =
N−1∑
i=1

N∑
j=i+1

V (rij) +
N∑
i=1

F (ρi)[2]

where the idices i and j idicates each of the end atoms, V (r) is a pairwise
potential, F (ρ) is the embedding energy function and ρi =

∑
j φ(rij) where

φ(r) is the density function. Determining the form of the potential is a
complex nonlinear optimization problem, which will not be elaborated here.
On the other hand we will examine the plots of the potential and state its
important features that we need to consider in our simulation. The complete
expression of the EAM potential used can be found in ref... Fig.2 illustrates

(a) Pair Potential (b) Density Function

Figure 2: Potential and Density Function plot for the speci�c EAM potential
that is used. The electron density is short range, only the electron density
less than 5Åis considered

the plot of the potential and the desity function. It is important to note that
the pairwise potential used has a hardcore condition. Any monte carlo move
that gives rise to an interatomic distance less than 1 Åis not allowed.
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Figure 3: This �gure shows the rescaling of the the simulation box after a
volume-change.

2.2 NPT Monte Carlo

The NPT MC is applied in this project as a remedy of the shearing prob-
lem in solid. This ensemble and the Burgers transformation, which will be
introduced in the next section, are proven to e�ectively solve this problem
for HCP to BCC phase transition. The isothermal-isobaric ensemble corre-
sponds to constant T,P, N, speci�ed as inputs of the simulation. This can
be thought as having the simulation coupled to the heat and volume bath.
The basic idea of NPT is similar to that of the Metropolis MC except for the
addition of the volume scaling moves. The sketch of the algorithm is:

• Volume Scaling Move
1. Pick a random change in volume uniformly from ∆V in range of
[−δVmax, δVmax] then make V ← V + ∆V
2. Scale the entire simulation box uniformly along each axis.
3. Scale the positions of particles uniformly
4. Recalculate the total potential energy
5. Accept with P acc

• Random Particle displacement Move
1. Pick a particle randomly then update the position by sampling from
a gaussian distribution
2. Update the energy
3. Accept with P acc
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The re-scaling procedure is in such a way that the dimensionless(normalized)
coordinates remain the same. The normalization is done as

(Sx,1, Sy,1, ..., Sz,N) = (
x1

L
,
y1

L
, ...,

zN
L

)

where L is the width of the simulation box. This procedure is illustrated in
�g.3.
The frequency of the moves is an important consideration to ensure the
markovian nature of the simulation. 1. Pick a random number from a uniform
distribution [0, 1]
2. if r < 1/(N + 1), do a volume scaling move. Otherwise, do the update
position move. This way will allow us to attempt on average of 1 volume
scaling move for every N attempted displacement moves. Note that to ensure
the Markovian nature this is drawn from a uniform probability. The �nal
ingredient is the acceptance probability(P acc). From the detailed balance
equation

P acc
old→new
P acc
new→old

=
Tnew→oldpnew
Told→newpold

, (1)

we have to compute the probability of the move(pm) and the transition prob-
ability(T). pm can be calculated in a similar manner as the Metropolis MC.,
however now the exponent is the Gibbs free energy. pm can be written as

pm =
e−βU−βPV

Λ3N
T N !

× drNdV

Z

where ΛT is the thermal wavelength and Z is the partition function. The tran-
sition probability for the displacement move cancels out as in the Metropolis
MC. The transition probability for the volume scaling move can be separated
in to two parts: the probability to pick V2 given V1 is given by

α(V1 → V2) =
1

2δVmax

The secon part of the transition probability is the probability to pick rNnew
given rNold. This is given as

Tnew→old
Told→new

=

(
Vnew
Vold

)N
From all the ingredients, the acceptance probability can be derived using eq.1
to be

P acc
old→new = min{1, eNln

(
Vnew
Vold

)
−β∆U−βP∆V } (2)
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2.3 Free Energy Calculation

Free energy is computed here to �nd the stable phase at di�erent (Temper-
ature, Pressure) coordinates. For system interacts with continuous poten-
tial U(rN), the free energy can be calculated using the method of potential
switching. We write an e�ective potential energy depends on a railing pa-
rameter λ. The potential is modi�ed to be

Ũ(r) = U(r0) + (1− λ)[U(r)− U(r0)] + λ

N∑
i

αi(ri − r0,i)
2 (3)

where σi are spring constants at i-th lattice site. When λ = 1, the potential
reduces to the perfect Einstein lattice case that we use as our reference state
since its free energy can be computed analytically:

FEin = U(rN0 )− 3

2β

N∑
i=1

ln(παiβ) (4)

The free energy then can be calculated from a reference con�guration which
is the Einstein lattice. We integrate λ with respect to the reference state to
the EAM potential. This is good because the expection value of ∂U

∂λ
can be

sampled from our Monte Carlo ensemble.

F = FEIN +

∫ λ=0

λ=1

dλ〈∂U(λ)

∂λ
〉 (5)

From eq.3 and eq.5, free energy can be written as

F = FEIN +

∫ λ=0

λ=1

dλ
N∑
i=1

αi(ri − r0,i)
2 − [U(r)− U(r0)]〉[4] (6)

2.4 Burgers Transformation

The accepted pathway for BCC-HCP transformation is called the Burgers
mechanism originally proposed for Zirconium[5]. It can be divided into three
phases. In the �rst stage, the (110)BCC planes undergo shear to transform
into the HCP basal (0001) plane(�g.4(b) and �g.4(c). Secondly, the shifting
of the atoms in the (110) plane leads to an FCC type of structure. Lastly,
alternate planes shift in the in the [110]BCC direction, completing the trans-
formation.
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(a) This �gure shows the 110
plane of BCC on the unit lattice

(b) The illustration of the 110
plane of BCC

(c) The illustration of the 0001
plane of HCP

Figure 4: This �gure illustrates the steps of the Burgers transformation

3 Results and Discussion

Metropolis Monte Carlo simulations were carried out under NPT ensemble
using Zr EAM potential for di�erent combinations of temperature and start-
ing con�guration. The initial setup consisted of a cuboidal box having 256
atoms. The 3 box lengths were allowed to change independently, keeping the
overall shape cuboidal. The pressure was kept constant at one atmosphere.
To verify the potential, we perform some simulation runs and calculate some
observables to compare to molecular dynamics calculation and experimental
results. The expected value from experiments is a=3.232 and the molecular
dynamics result is a=3.232[2]. When starting from an initial BCC con�gura-
tion at room temperature, as shown in the �g.5(a), the super cell equilibrates
to a perfect HCP lattice via the Burgers transform pathway within 1 million
Monte Carlo steps. The lattice parameter and c/a ratio have been reproduced
within reasonable accuracy of experimental values.

However, it takes longer to equilibrate at lower temperatures 100K, pos-
sibly due to slow dynamics. In order to con�rm that the HCP phase is not
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(a) The system transforms from BCC to
HCP structure

(b) The system transforms from some ran-
dom starting lattice to HCP

Figure 5: Our simulation shows that for T=300K and P=1 atmosphere, any
lattice structure transforms to HCP lattice as expected from experiments

Table 1: Lattice values for BCC-HCP

Temperature(K) a(Å) c/a
100 3.240126±0.000112 1.716752±0.000086
200 3.242465±0.000163 1.718308±0.000123
300 3.243776±0.000191 1.605709 ±0.000125
400 3.245310±0.000211 1.605012 ±0.000138

being stabilized by the PBC alone, simulations were also started with arbi-
trary initial con�guration(�g.5(b). The system equilibrates to a stable HCP
phase in 1 million MC steps, albeit with a few stacking faults, and may even-
tually transform to perfect HCP if allowed to simulate for longer. Since this
transformation was not in the (110)BCC plane, the lattice parameter and c/a
ratio could not be sampled directly from the box width and length. Hence,
pair distribution function was plotted to quantify the structure(�g.6(a)). The
peak observed at 3.25 Åcorresponds to the nearest neighbour distance and
is reasonably close to the experimental value, but also shows that system
needs to equilibrate further. Another set of simulations were also carried out
starting directly from the HCP phase at room temperature, with modi�ed
lattice constants.

It was observed that the system quickly equilibrated to the perfect HCP
phase, reproducing the lattice constants, thus validating the potential. An
attempt was also made to locate the HCP-BCC transition temperature but
could not be determined using simulations alone. Neither phase undergoes
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Table 2: Lattice values for HCP-HCP

Temperature(K) a(Å) c/a
100 3.241199±0.000070 1.607152±0.000046
200 3.242909±0.000101 1.606097 ±0.000065
300 3.246139±0.000386 1.604255 ±0.000247
400 3.247921±0.000434 1.602724 ±0.000284

Table 3: Free energy for HCP and BCC phase at 1200K.

Structure Free Energy(eV)
HCP -1084.5497116±23.159035337208316
BCC -976.697421736±28.07292821723887

any transformation when close to the transition temperature, even in 2 mil-
lion MC steps. This may be due to several reasons, such as hysteresis, a high
transition barrier and arti�cial stability due to PBCs. Hence, free energy
calculations were performed.

Molecular dynamics simulation reported a transition at 1233K[2]. This
was con�rmed by free energy results as being between 1200K-1300K. The
HCP phase is more stable at 1200K while the BCC phase is more stable at
1300. However, an accurate estimate of the transition temperature could not
be obtained and additional work is needed here.

4 summary

An attempt was made to validate zirconium EAM potential using NPT
Monte Carlo simulation.Burgers transformation is used to ensure that cuboid
periodic boundary condition is suitable for both BCC and HCP. HCP relaxed
phase obtained from initial BCC structure as well as random initial struc-
ture. The pair correlation function and the structure factor are calculated at
room temperature for a transformation from random intial con�guration to
HCP lattice when calculating c/a value is nontrivial. We found that the Free
energy calculation shows that the transition temperature should lie between
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Table 4: Free Energy for HCP and BCC phase at 1300K.

Structure Free Energy(eV)
HCP -963.295073649±28.736128637559702
BCC -1024.00599112±26.653711893629307

(a) Pair Correlation Function of HCP phase (b) Structure factor plot for HCP phase

Figure 6: Pair correlation function and structure factor computed from the
Monte Carlo simulation starting from a random initial con�guration

1200 K. and 1300 K. This agrees very well with the experimental value and
the molecular dynamics simulation of 1233 K[2].
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