Heteroepitaxial Growth Using Off-Lattice KMC

Anne Marie Tan

Brian McGuigan

Jacob Gruber

Why Heteroepitaxy?

- Difficult to Model
 - Multiple Species
 - Dislocations and point defects important
 - Species Flux important
- The Silicon Age is Ending
 - New materials and growth required
- Useful in design of Devices
 - **\$\$\$**

Motivation for Off-Lattice KMC Heteroepitaxy

- Lattice fixed atoms have restricted motion
- Inability to classify defects such as dislocations
- Defects play a tremendous role in semiconductor device performance
- "Strain" between multispecies interfaces cannot be accurately classified with on-lattice KMC

http://www.sciencedirect.com/science/article/pii/S0022024804003112

Previous Work

- * Biehl (2004)
 - Heteroepitaxy
 - Particles differ in size
 - Leonard-Jones Potential
 - KMC
 - Time scale too long for MD
 - Off Lattice
 - Strain Relaxation
 - Dislocation formation
 - Diffusion

Off-Lattice KMC algorithm

Initialization:

- Initialize substrate
- "Bin" atoms
- Initialize rate catalog
 - Find 'free' atoms
 - Find Potential Energy Surface (PES)
 - Calculate rates to local minima in PES

Main loop:

- Choose a move from the rate catalog
- Deposit an atom/make a diffusion move
- Perform local relaxation
- Update "binning" (local update)
- Update rate catalog (local update)
- ...repeat over and over again...

Atom "Binning"

- L-J interaction falls off rapidly and becomes negligible at distances > 3σ
- Consider only particles in a neighborhood region when calculating forces, energies, and for determining which rates need to be recalculated after a move has been made
- Fast identification of surface atoms

http://www.emeraldinsight.com/content_images/fig/3980020402014.png

KMC: N-Fold Rate Catalog

KMC rate catalog made from surface atom PES scan and deposition rate

$$R_{Deposition} = \left(\frac{L_{substrate}}{a_s}\right) * \frac{Monolayer}{s}$$

$$R_{Diffusion = v_0 * \exp(-\frac{\Delta E}{kt})}$$

where
$$v_0 = 10^{12}/s$$

- Catalog is scaled according to total rate
- Random number 0-1 is chosen
- Bisection search algorithm chooses event

Event	Barrier Height ΔE	Final Position
Atom 1: Move Left	ΔΕ1	X1
Atom 1: Move Right	ΔΕ2	X2
Atom 2: Move: Left	ΔΕ3	Х3
Atom 2: Move: Right	ΔΕ4	X4
	-	
Deposition		Xn

1

Generation of PES – Making a virtual move

Move atom slightly along the x-direction

Minimize energy with respect to the atom's y-position (using "frozen crystal approximation")

Generation of PES

Physics behind it...Ehrlich-Schwoebel barrier

http://eng.thesaurus.rusnano.com/upload/iblock/ebd/ehrlich-schwoebel-barrier.jpg

- Atom approaching the step on the lower side has a lowered energy barrier to attach to the step → site at the step has a larger number of nearest neighbors
- Atom approaching the step on the top side faces an additional energy barrier ΔE_{ES} , known as Ehrlich–Schwoebel barrier \rightarrow has to pass through a state with a low number of nearest neighbors in order to cross the step edge

Deposition Event

- Surface atoms are identified from surface bins
- Atom is placed on top of and either to the left or right of a randomly chosen surface atom
- * Atoms are relaxed to local minimum with molecular statics

Molecular statics relaxation

Conjugate Gradient Minimization Algorithm

- $\Delta x_0 = -\nabla_x f(x_0)$
- Perform Initial Line Search: Determine α_0 for x and y direction of each atom such that $f(x_0 + \alpha \Delta x_0)$ is minimized
- Update Positions: $x_1 = x_0 + \alpha_0 \Delta x_0$
- Initialize Conjugate Direction: $s_0 = \Delta x_0$
 - 1. Determine the Steepest Direction: $\Delta x_n = -\nabla_x f(x_n)$
 - 2. Determine Conjugate Direction Step Size β_n According to Polak-Ribiere Formalism: $\beta_n = \frac{\Delta x_n^T (\Delta x_n \Delta x_{n-1})}{\Delta x_{n-1}^T \Delta x_{n-1}}$
 - 3. Update the Conjugate Direction: $s_n = \Delta x_n + n s_{n-1}$
 - 4. Perform Line Search: Determine α_n for x and y direction of each atom such that $f(x_n + \alpha \Delta s_n)$ is minimized
 - 5. Update Positions: $x_{n+1} = x_n + \alpha_n s_n$
 - 6. Repeat 1-5 Until Forces on All Atoms are Sufficiently Small

Molecular statics relaxation of simple system

Initial Configuration

Relaxed Configuration

Fixed Positions on Bottom Row

Adaptive KMC

Oscillation between states

- See it in Action!
- Rate $\propto \exp(-\Delta E)$
- ΔE is small, rate blows up
- Moves between these states dominate all others
- No evolution in system

Solution

- Scale Rate by $\exp(-\kappa N)$
- κ = Damping Constant
- N = number of times move has occurred before

Ideal Solution

- Combine states into superstates
- High programming cost

Results: Two Species System Video

- Substrate Lattice Constant: 1.0
- Film Lattice Constant: 1.05
- http://www.youtube.com/watch?v=i3dCXWubuF w

Results: Two Species System Video

- ❖ Substrate Lattice Constant: 1.0
- Film Lattice Constant:0.95
- http://www.youtube.com/watch?v=Fec6yvWzam8

Classifying Strain/Defects:

Color map based on average neighbor interatomic distance

Extending this model: Multi-Species Deposition

Random probability of depositing both species

Future Work/Questions

- Model shows reasonable results: Dislocations can be classified
- Increase system size for 2D
- Extend to more complicated potentials
- Extend to three dimensions
- Questions???