Modeling the Free Energy Landscape for Janus Particle Self-Assembly in the Gas Phase

Andy Long
Kridsanaphong Limtragool

Motivation

- We want to study the spontaneous formation of micelles and vesicles
- Applications in drug delivery and biological self-assembly

Past work

Fig. 10 Snapshot from a simulation at $\rho = 0.005$ and T = 0.25 for several MC steps, indicated in the labels. The initial configuration, composed by isolated monomers, quickly evolves to form small micelles (a-c). The final vesicle (g) arises from a collision between three distinct micelles (d-e) which form an elongated transient tubular cluster (f). Each picture has a side length of 9σ .

Outline of the project

- Use canonical ensemble MC to simulate system of Janus particles with umbrella sampling
- Use weighted histogram analysis method (WHAM) to reconstruct a free energy surface
- Investigate assembly landscapes for different temperature/density systems

Janus Particle System

- Kern-Frenkel Janus Particle
- Hard sphere on one side and hard sphere with a square-well attraction on the other side

$$U(\vec{r}_{ij}) = u(\vec{r}_{ij})f(\Omega_{ij})$$

Free energy calculation

• Want to calculate the free energy along the reaction coordinate/order parameter ξ

$$A(\xi) = -\frac{1}{\beta} \ln Q(\xi)$$
 where
$$Q(\xi) = \frac{\int \delta(\xi(r) - \xi) \exp(-\beta E) \, d^N r}{\int \exp(-\beta E) \, d^N r}$$

- $Q(\xi)$ can be obtained from the probability distribution of ξ
- Can use MC/MD to find $Q(\xi)$ directly

Problem with direct sampling

Simulation spends most of the time at equilibrium

Umbrella sampling

 Bias the sampling toward a fixed order parameter by a harmonic potential

$$\alpha(\xi) = k_B T \frac{\kappa}{2} (\xi - \xi_0)^2$$

• Construct histograms for the distribution of ξ at various fixed points along the chosen order parameter

Reaction Coordinate/Order Parameter

- Use the order 4^{th} rotationally invariant spherical harmonics : Q_4
- Used in umbrella sampling of nucleation of Lennard Jones clusters to drive from liquid to aggregate structures

$$\bar{Q}_{lm} \equiv \frac{1}{N_b} \sum_{r_{ij}} Y_{lm} \left(\theta(r_{ij}), \phi(r_{ij}) \right)$$

$$Q_l \equiv \left[\frac{4\pi}{2l+1} \sum_{m=-l}^{l} |\bar{Q}_{lm}|^2 \right]^{\frac{1}{2}}$$

Canonical Ensemble MC

- Possible particles moves
 - translation
 - rotation of a patch vector
- Add harmonic potential term to total energy for umbrella sampling

$$acc(s_i \to s_i') = \min\{1, e^{-\beta \Delta V} e^{-\beta \Delta \alpha}\}$$

• Construct histograms of Q_4 for set of fixed Q_4 windows

Reconstruct free energy surface

- Use WHAM to reconstruct the free energy surface
- Need to convert the biased distributions of Q_4 to become unbiased
- Tries to find weights for each window that maximize the expected likelihood of the data from our unbiased distribution

How to use WHAM

Self-consistently solve the system of equations

$$P^{\mathrm{u}}(\xi) = \sum_{i}^{\mathrm{windows}} p_{i}(\xi) P_{i}^{\mathrm{u}}(\xi)$$

$$p_{i} = \frac{a_{i}}{\sum_{j} a_{j}}, a_{i}(\xi) = N_{i} \exp[-\beta \omega_{i}(\xi) + \beta F_{i}]$$

$$\exp(-\beta F_{i}) = \int P^{\mathrm{u}}(\xi) \exp[-\beta w_{i}(\xi)] d\xi$$

Calculate A(ξ) from P(ξ)

$$A(\xi) = -\frac{1}{\beta} \ln P^{u}(\xi)$$

Different Assembly Phenomena

Structures

Vesicle Sheet

Micelle

Tube

Mapping Structure to FE Landscape

Constant Density ($\rho\sigma^3=0.05$)

Constant Temperature ($\beta = 5$)

Conclusions

- Umbrella sampling able to bias simulations to different assembled structures
- Able to effectively capture the assembly landscape for Janus particles based on local particle symmetry using the WHAM algorithm
- Issues with chosen reaction coordinate

Proposed Future Work

- Bias based on a cluster order parameter, not particle order parameter
- Incorporate Grand/Gibbs Canonical moves to allow for easier fluctuations in structure as cell volume and number of particles change
- Utilize generalized geometric cluster algorithm to allow for cluster moves

References

- [1] Sciortino, F. et al. *Phys. Chem. Chem. Phys.*, **12** (2010) 11869-11877.
- [2] Roux, B. Comp. Phys. Comm., 91 (1995) 275-282.
- [3] ten Wolde, P. R. et al. J. Chem. Phys., 104 (1996) 9932-9947.
- [4] Fillion, L. et al. J. Chem. Phys., 133 (2010) 244115-244130.
- [5] Kästner, J. (2011), Umbrella sampling. WIREs Comput Mol Sci, 1: 932–942.
- [6] http://www.engr.ucsb.edu/~shell/che210d/Biased_sampling.pdf