Molecular Dynamics Simulation of Nanoconfined Water Film
 KYLE LINDQUIST \& SHU-HAN CHAO

Motivation

- Investigating behavior of water confined between surfaces in nano-scale environment is important for:
- Biological systems (ex: ion channel)
- Nanoelectromechanical systmes (NEMS)
- Nanolithography
- Tribology

http://www.nist.gov/cnst/nrg/nanofluidics.cfm

http://www.memx.com/

MD simulation by NAMD

- NAMD (NAnoscale Molecular Dynamics) is a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems.
- Velocity Verlet.
- CHARMM force field

$$
\begin{aligned}
& \vec{F}(\vec{r})=-\nabla U(\vec{r}), \\
& U(\vec{r})=\sum U_{\text {bonded }}(\vec{r})+\sum U_{\text {nonbonded }}(\vec{r}),
\end{aligned}
$$

$$
\begin{aligned}
& U_{\text {bond }}=k\left(r_{i j}-r_{0}\right)^{2}, \\
& U_{\text {angle }}=k_{\theta}\left(\theta-\theta_{0}\right)^{2}+k_{\mathrm{ub}}\left(r_{i k}-r_{\mathrm{ub}}\right)^{2}, \\
& U_{\text {tors }}= \begin{cases}k(1+\cos (n \psi+\phi)) & \text { if } n>0, \\
k(\psi-\phi)^{2} & \text { if } n=0,\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& U_{\mathrm{LJ}}=\left(-E_{\min }\right)\left[\left(\frac{R_{\min }}{r_{i j}}\right)^{12}-2\left(\frac{R_{\min }}{r_{i j}}\right)^{6}\right] \\
& U_{\mathrm{elec}}=\epsilon_{14} \frac{C q_{i} q_{j}}{\epsilon_{0} r_{i j}}
\end{aligned}
$$

Water model - TIP3P

Good:

- Computational efficiency
- Optimized with NAMD

Bad:

- Diffuse quicker than other models and real water

	Ensemble	$T\left({ }^{\circ} \mathrm{C}\right)$	$P(\mathrm{~atm})$	Density $^{\mathrm{a}}$	D^{b}
SPC	NPT	25	1		3.85 ± 0.09
SPC/E	NPT	25	1		2.49 ± 0.05
TIP3P	NPT	25	1		5.19 ± 0.08
TIP4P	NPT	25	1		3.31 ± 0.08
TIP3P	NVT	25	(1)	0.993^{c}	5.06 ± 0.09
TIP4P	NVT	25	(1)	0.990^{c}	3.29 ± 0.05
TIP5P	NVT	25	(1)	0.999^{c}	2.62 ± 0.04
Expt. $^{\mathrm{d}}$		25	1	0.997	2.30

[^0]
Set up the System

(B)

The final system size 10~50k atoms

Simulation setup

- 1 fs timestep
- Pairlist 10 Å, update every 10 steps
- Run NPT for 60 ps at 298 K to reach equilibrium
- Nosé-Hoover Langevin piston pressure control
- System size fluctuate in z

$$
\begin{aligned}
& P_{0}=1 \mathrm{bar} \\
& P_{\mathrm{sys}}=-\mathrm{dU} / \mathrm{dV}
\end{aligned}
$$

- Run NVE for 50 ps, with Silicon fixed

Single layer water film

2

Unit thickness of layer H $\equiv 3.5 \AA$

Layer structure at water-Si interface

Layer structure at water-Si interface

Layer structure at water-Si interface

3H

Layer structure at water-Si interface 5H 10H

-

00000000000000000000000000

Pair Correlation - What can we tell about layers?

Pair Correlation - What can we tell about layers?

Pair Correlation - What can we tell about layers?

Pair Correlation - What can we tell about layers?

Pair Correlation - What can we tell about layers?

Pair Correlation - What can we tell about layers?

Pair Correlation - What can we tell about layers?

Translational Diffusion

$$
D=\frac{1}{6 N t}\left\langle\sum_{j=1}^{N}\left[r_{j}(t)-r_{j}(0)\right]^{2}\right\rangle
$$

For 5H (17.5 Å) Gap : D_edge/D_mid ~ 0.71
For 10 H Gap (52.5 Å) : D_edge/D_mid ~ 0.52

Summary

- In the nanoconfined environment, waters molecules tend to form 2-3 layers at the interface. Each layer is around 3-4 A
- Water dynamics at the boundary layer is more retarded, the diffusion coefficient is even half of that in the center.

In the future:

- Rotational diffusion/ Exchange rate between layers
- Imply Load/Shear force. Will it enhance the layer structure?

Thank you! Questions?

Appendix

System \& Location	Diffusion Coefficient $\left(\mathrm{cm}^{2} / \mathrm{s}\right)$
Bulk Water	$4.2 \mathrm{E}-5$
Entire 1H	$4.3 \mathrm{E}-5$
Top Edge, 5H	$4.3 \mathrm{E}-5$
Center, 5H	$4.0 \mathrm{E}-5$
Bottom Edge, 5H	$4.0 \mathrm{E}-5$
Top Edge, 10H	$1.1 \mathrm{E}-3$
Center, 10H	$1.2 \mathrm{E}-3$
Bottom Edge, 10 H	$1.1 \mathrm{E}-3$

[^0]: ${ }^{2}$ Units are $\mathrm{g} / \mathrm{cm}^{3}$.
 ${ }^{6}$ Units are $10^{-5} \mathrm{~cm}^{2} / \mathrm{s}$.

