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Abstract

When traveling to a destination, both humans and animals generally attempt to optimize
the chosen path by minimizing either the distance traveled or the time spent traveling.
However, these ”optimal” paths may not necessarily be the most comfortable, depending on
the terrain and any obstaces encountered on these paths. Deviations from time-optimized
paths lead the walkers to alternate routes with comfort levels greater than the optimal ones,
and the walkers’ subsequent interactions with their environment create new paths or can
reinforce old ones. We study a simple model of active walkers that interact with a comfort
field on their way to a destination. We show that sufficiently strong interactions between the
walkers and their enviroment cause the emergence of trail networks, and we analyze both
the efficieny of these trails as well as the degree to which these trails are utilized by active
walkers.

1 Introduction and Motivation

Given an open walking region, a person or animal traveling from one point in the region to
another generally optimizes some aspect of the pathway she will walk. A direct line path from
origin to destination minimizes the distance traveled, but may not minimize the time, taking
inhomogeneous and rough terrain into consideration. However, a walker traipsing on difficult—
but malleable—terrain such as snow or vegetation leaves lasting footprints. The next walker
to traverse the landscape will no doubt take the same path because of the ease of travel these
footprints provide, reinforcing the freshly made trail. Over time, lasting trail formations develop,
creating large networks which gradually change over time.

This effect is most prominently seen in ant colonies [1], who, in the search for food, lay down
chemical signals to mark their trails. Other ants that fall upon these trails move along them and
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reinforce the strength of any signals encountered. Trails that are long and winding, and thus
inefficient, are traveled less often than trails that route to a food source succinctly and efficiently.
As a result, these winding trails die away and leave a strong path visible to any ant in the colony
to a food source.

In this study, we explore generic walkers moving between destinations on a map while inter-
acting with the terrain. We will show that the trails formed in this way organize into structures
that look like road networks, and we contrast this with a model in which no interactions with the
environment are considered. A model with no interactions produces a complete graph between all
possible destinations; each pathway is a geodesic which minimizes distance. However, this config-
uration does not minimize the total area covered by all trails, which is of practical importance for
urban planners, foresters, and architects, to whom total area is proportional to cost. By allowing
interactions with the landscape, walkers can produce trails with small total path distance at the
expense of longer paths between destinations.

In general, the interactions of walkers with their terrain involve many tuneable parameters,
specifically the rate of regeneration of terrain, the intensity of walkers’ footsteps, and the visibility
(”line of sight” distance). Our goal is to study the emergence of trail formations as a function of
these various parameters.

Figure 1: Park space of the University of Brasilia—Trails are made in the grass by the footprints
of walkers, and trails that have begun are reinforced by walkers who decide to maximize comfort
over minimizing time of travel. The trail networks evident in the lawn remain because the rate
of regeneration of the rough terrain is much lower than the rate of traversal by walkers [3].
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2 Model and Theory

The active walker model consists of N walkers in an L×L box with hard (reflective) boundaries.
There are d potential destinations that act as either sources or sinks for the walkers. Walkers
are uniformly and randomly assigned a source and a sink (such that the sink and source are not
the same position). When a walker reaches her destination, she stops, exits the field, and a new
walker begins a new, random source-sink walk (i.e. the number of walkers on the field at any
given time is always N).

The equation of motion of the ith walker is [2]:

~f(~r, t) =
1

τ
(v0~e(~r)− ~v(t))− ~∇V (~r) + ~ξ(t) (1)

where V is the gravitational potential that describes the landscape of the field (set to 0 in the

simplest cases), ~e is a unit vector in the walker’s desired direction, ~ξ is uncorrelated Gaussian
noise with amplitude σ, and τ is the walker’s relaxation time [2]. The direction ~e is determined
by the direction to the walker’s destination and the presence of paths around the walker. To
describe the presence of a path, we define a scalar field G(~r); large values of G are interpreted
as “comfortable“ paths at the position ~r. The walker, upon each step, looks for paths around it,
such that a portion of the field with area d2r that has comfort G(~r) attracts the walker such that
the total force is:

~fi,trail =

∫
d2r

(~r − ~ri)
|~r − ~ri|

exp(−|~r − ~ri|/σ)G(~r)/(2πσ2) (2)

This formulation produces an attractive force towards trails only within a radius σ of the

walker, characterizing the visibility. The force ~fi,trail is averagedwith the force towards the desti-

nation ~fi,dest defined as:

~fi,dest =
~ri,dest − ~ri
|~ri,dest − ~ri|

(3)

~e =
~fi,trail + ~fi,dest

|~fi,trail + ~fi,dest|
(4)

The field G(~r) is dynamic in time; as walkers trample the terrain, G(~r, t) increases at the posi-
tion of the walkers’ footsteps, but G(~r, t) decreases in time as the terrain’s roughness regenerates
[2]. The regeneration rate simulates vegetation reclaiming trampled paths or snow falling to fill
in footsteps. We model the dynamics of G(~r, t) as:
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∂G(~r, t)

∂t
= −G(~r, t)

T (~r)
+ I(~r)

(
1− G(~r, t)

Gmax(~r)

) N∑
i

δ(~r − ~ri) (5)

The function T (~r) sets the time-scale for the regeneration of terrain. The field I(~r) describes
the intensity of walkers’ footsteps. The term Gmax(~r) defines the saturation value of the comfort
field G(~r, t) to prevent it from growing without bound [2]. This also produces the effect of trail
deterioration by over-use: if G > Gmax, then the footsteps have a detrimental effect on the
pathway, but this effect is not seen in practice.

Helbing et. al in [2] characterize the trail networks they generate by measuring the qualitative
paths that form. We define a systematic method to quantitatively characterize our trail networks
by defining two parameters. The first is ε, the efficiency of the trail network. We would like to
define ε to be small for trails that are spatially spread out and large for trails that are concise and
well-defined. The second is c, the ”civility” of a walk. This parameter sums the values of G(~r, t)
along the path of a particular walker and averages over the total number of footsteps over that
path.

3 Methods and Implementation

Using time steps of ∆, the walkers progress in time according to a simple Verlet velocity algorithm
borrowed from molecular dynamics simulations [4] (setting mass to 1):

~r(t+ ∆) = 2~r(t)− ~r(t−∆) + ∆2 ~f(t) (6)

~v(t+ ∆) =
1

∆
(~r(t+ ∆)− ~r(t)) (7)

Here, ~f is calculated from Equation 1 from the positions of the trails, destinations, etc.

The comfort field G(~r, t) is discretized into small square cells of width L/n, with n the number
of cells on a side, which is amenable to a matrix representation. The fields T, I, and Gmax will
also be discretized in the same way. The time evolution of Gi,j is simply:

Gi,j(t+ ∆) = ∆
∂Gi,j(~r, t)

∂t
(8)

The efficiency coefficient ε will be defined as

ε−1 = 1000
∑

〈i,j〉∈{i,j}:Gi,j>Ii,j

Θ(Ii,j −Gi,j) (9)
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Here, Θ is the Heaviside step function. The notation 〈i, j〉 denotes nearest neighbors. For
every cell with G > I, which constitutes a segment of path, we count its nearest neighbors whose
G < I. The factor of 1000 is chosen empirically to make the index ε on the order of unity.
This criterion was chosen because I represents the incremental increase in G from G = 0 after
one walker’s footstep. This effectively measures the total length of the borders of the network.
An intuitive interpretation would be the amount of curbside necessary to create roads along the
network. Efficient networks are more compressed whereas inefficient networks are spread out and
have large borders. We present the efficiency of the steady-state network structures, not the
dynamic structures.

The second parameter we call the ”civility,” which should measure the average comfort that a
walker experiences. For each walker, we sum up the comfort field Gi,j of every cell that the walker
steps into. When the walker reaches its destination and leaves the field, this sum

∑
pathGi,j is

divided by the number of steps taken.

ck =

( ∑
path of k

Gi,j

)
/

( ∑
path of k

1

)
. (10)

Because there are many walkers taking many different paths, the value of c varies for each
walker k and will be, in general, a function of time. As the G field evolves, we expect the average
civility to increase to some steady-state value. A trail that has dense traffic will have a large
equilibrium G value, and thus these walkers will have a high civility coefficient. Trails that do
not channel lots of traffic will have low civility. Walkers that simply take the minimum distance
route to their destinations will thus not collect together and form heavy-traffic areas, lowering
their civility coefficient.

Using qualitative arguments of the form of Gi,j(t) and the parameters ε and c, we will charac-
terize:

• Vary the parameter σ and see its effect on the shape of the path network, i.e. the total
path length, efficiency, average civility, connectivity of destinations, and qualitative features.
The parameter σ controls the length scale of interactions (keeping v0 constant), so for large
σ walkers’ decisions are influenced by very many pathways, much like having a road-map
available to read. For small σ, the model should produce results of walker movement when
knowledge of existing trails is very limited, i.e., the walkers see what is around them and
optimize comfort locally.

• Vary the parameters I and T to change the rate of change of the G field. I is essentially the
coupling between the walkers and the field, and T controls the time scale of regeneration.
Making both of these parameters large will create dense, long-lasting paths, whereas making
these trails small will cause trails to disappear quickly.
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• Alter the gravitational potential V (~r). When V = 0, the shortest distance path is given by
the simple straight line geodesic. When the potential is nonzero, the straight-line paths will
be deformed to new ”geodesics.“ We will test whether the walkers, by interacting with each
others’ paths, can optimize a more complex landscape with features such as hills, valleys,
and hard walls.

4 Results

A triangular configuration and asymmetric X-shaped configuration of destinations were tested for
various values of σ, the line-of-sight parameter. We find that for small values of σ, the paths
that form are tight and concise, whereas path networks for large σ tend towards the inefficient
distance-minimizing pathways. The results for the efficiency parameter for these path networks
are shown in Tables 1 and 2. Intensity maps of the comfort field G(~r) at the end of the simulation
are given in Figure 2.

σ ε
0.05 4.80± 0.15
0.1 3.87± 0.07
0.2 3.42± 0.01
0.5 3.23± 0.02

Table 1: Our measure of efficiency decreases as the line-of-sight parameter σ increases. As
σ decreases, walkers couple tightly to paths around them and are less inclined to move directly
to their destination. The error bars are calculated from variations in six repeated realizations of
each σ value.

σ ε
0.05 1.49± 0.02
0.1 1.05± 0.02
0.2 0.949± 0.013
0.5 0.968± 0.008

Table 2: The values of efficiency for the X-shaped path.

Next, we tested the effect of T and I on the structure of the trail network. We used a
triangular array of destinations and an asymmetric X-shaped array of cities again. The results of
the efficiency parameter are shown in Tables 3 and 4.

Lastly, we show the effect of static gravitational potential fields. Sufficiently complicated
potentials will distort the straight-line paths connecting destinations into more intricate networks.
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(a) Triangular configuration for σ = 0.05. (b) Triangular configuration for σ = 0.1.

(c) Triangular configuration for σ = 0.2. (d) Triangular configuration for σ = 0.5.

Figure 2: These plots show the steady-state networks for a triangular group of cities. The run
time was 2000 time steps of ∆ = 0.0015, Gmax = 20, I = 0.8, T = 0.05, v0 = 20, and the number
of walkers N = 30. The potential is flat, so when σ becomes large, the path network turns into
straight lines between destinations.
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(a) X configuration for σ = 0.05. (b) X configuration for σ = 0.1.

(c) X configuration for σ = 0.2. (d) X configuration for σ = 0.5.

Figure 3: These plots show the steady-state networks for the asymmetric X configuration. There
are cities at the positions (0.25,0.25), (0.25,0.75), (0.75,0.25), (0.75,0.75), and (0.5,0.35) to break
the symmetry. The run time was 2000 time steps of ∆ = 0.0015, Gmax = 20, I = 0.4, T = 0.05,
v0 = 20, and the number of walkers N = 30. In this more complicated array of cities, the efficiency
does not monotonically increase with decreasing σ.
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(a) Triangular configuration for σ = 0.05. (b) Triangular configuration for σ = 0.1.

(c) Triangular configuration for σ = 0.2. (d) Triangular configuration for σ = 0.5.

Figure 4: These plots show the dynamic civility coefficient for a triangular group of cities. The
civility c(t) is the average value of G in a given walk that is completed at time t. As time
progresses, these average G values should converge as the network settles to a steady state. Only
the first few hundred time steps are shown, as the values saturate after about 1000 time steps.
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(a) X configuration for σ = 0.05. (b) X configuration for σ = 0.1.

(c) X configuration for σ = 0.2. (d) X configuration for σ = 0.5.

Figure 5: These plots show the dynamic civility coefficient for a square group of cities. The civility
c(t) is the average value of G in a given walk that is completed at time t. As time progresses,
these average G values should converge as the network settles to a steady state. Only the first
few hundred time steps are shown, as the values saturate after about 1000 time steps.
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(a) Triangular configuration for T = 0.05, I =
0.08.

(b) Triangular configuration for T = 0.05, I =
0.8.

(c) Triangular configuration for T = 0.5, I =
0.08.

(d) Triangular configuration for T = 0.5, I = 0.8.

Figure 6: These plots show the steady-state networks for a triangular group of cities with varying
T and I. The run time was 2000 time steps of ∆ = 0.0015, Gmax = 20, σ = 0.1, v0 = 20, and the
number of walkers N = 30. The potential here is again flat.

11



(a) Triangular configuration for T = 0.05, I =
0.05.

(b) Triangular configuration for T = 0.05, I =
0.2.

(c) Triangular configuration for T = 0.2, I =
0.05.

(d) Triangular configuration for T = 0.2, I = 0.2.

Figure 7: These plots show the steady-state networks for the X-shaped array of cities with varying
T and I. The run time was 2000 time steps of ∆ = 0.0015, Gmax = 20, σ = 0.1, v0 = 20, and the
number of walkers N = 30. The potential here is again flat.
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(a) Triangular configuration for T = 0.05, I =
0.08.

(b) Triangular configuration for T = 0.05, I =
0.8.

(c) Triangular configuration for T = 0.5, I =
0.08.

(d) Triangular configuration for T = 0.5, I = 0.8.

Figure 8: These plots show average G value, the civility c(t), over paths that end at time t for a
triangular group of cities with varying T and I. The run time was 2000 time steps of ∆ = 0.0015,
Gmax = 20, σ = 0.1, v0 = 20, and the number of walkers N = 30. The potential here is again
flat. Only the first few hundred time steps are shown, as the values saturate after about 1000
time steps.
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(a) X configuration for T = 0.05, I = 0.05. (b) X configuration for T = 0.05, I = 0.2.

(c) X configuration for T = 0.2, I = 0.05. (d) X configuration for T = 0.2, I = 0.2.

Figure 9: These plots show the dynamic civility coefficient for the asymmetric X configuration of
cities. The civility c(t) is the average value of G in a given walk that is completed at time t. As
time progresses, these average G values should converge as the network settles to a steady state.
Only the first few hundred time steps are shown, as the values saturate after about 1000 time
steps.
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T I ε
0.05 0.08 3.27± 0.01
0.05 0.8 3.69± 0.07
0.5 0.08 4.19± 0.02
0.5 0.8 4.44± 0.06

Table 3: This table shows the efficiency’s dependence on the time scale of comfort restoration T
and the foostep intensity I for the triangular city configuration.

T I ε
0.05 0.05 0.991± 0.006
0.05 0.2 1.055± 0.008
0.2 0.05 1.181± 0.007
0.2 0.2 1.298± 0.015

Table 4: The efficiency’s dependence on the time scale of comfort restoration T and the foostep
intensity I for the X configuration.

Our goal was to see if this added complexity made it more difficult for the walkers to optimize
the trail network.

The potentials we tested were a double-hill system of Gaussian-shaped bumps with potential
functions

V1(x, y) = 400 exp

(
−(x− 0.1)2 − (y − 0.3)2

0.08

)
+ 1000 exp

(
−(x− 0.7)2 − (y − 0.6)2

0.02

)
. (11)

V2(x, y) = 1000 cos2(2πy) exp
(
−60(x− 0.5)2

)
(12)

V1 is the potential of two steep hills, one at (0.1,0.3) and one at (0.7,0.6). V2 is a ravine system
with a ”mountain range“ and two passages through it. Surface plots of these potentials are shown
in Figure 10.

For each potential, we do a single run for each of two values of σ, to see qualitatively how the
potentials affect the distribution of paths.

5 Discussion

All the tuneable parameters had to be chosen carefully such that the walkers actually finished
their paths. In Figure 13, we show how walkers can be too attracted to the pathways and not
enough to their destination in a phenomenon we have called pooling.
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(a) Gaussian hill potential. (b) Ravine or mountain range potential.

Figure 10: Potentials used to test how much the walkers could affect the complex geodesic paths.

Tables 1–4 show that with decreasing σ, the path networks increase in efficiency. This effect
is evident in Figure 2; as σ decreases, the paths pinch together and eliminate area between them.
The average length of paths between destinations increase, but all together, this corresponds to a
decrease in the total path length. This agrees with the results of [2], in which the experiment was
performed on the triangular configuration, whose results we replicate. The X formation (Figure
3) is our own result, where the path-pinching effect is also seen. With the X formation, we
implemented a destination that was nearby, but not directly on, a straight-line path between two
other destinations. As the parameter σ decreased and coupling to the path became stronger, the
off-center middle city became a way-point for walkers crossing from one corner to the other.

Figure 4 shows that the civility increases as time progresses, because the walkers adjust their
paths to ones with increased comfort. The average civility saturates as the map equilibrates. The
initial walkers enjoy no comfort whatsoever, so their civility (total comfort per step) is low. As
the trails become more defiend, each step experiences an increased comfort, increasing the civility
as well.

In general, as the intensity of stepping I increases, the civility should increase as well, seen
in both figures 4 and 5. A large I should also increase the variance in civilities for a given
trail formation, because the change in comfort after each step is larger. Additionally, a larger
regeneration rate (smaller T ) should cause a larger variance and smaller average value of civility,
as the path deteriorates more quickly, causing the total comfort of a path to decrease more quickly
for the next walker. This is indeed seen in both figures.

The addition of graviational potential hills alters the chosen paths to ones that avoid them.
As seen in figures 11 and 12, walkers tend to walk around the hills even if a city is on top of
one. The paths tend to go through areas between adjacent hills even if the straight line path goes
over one of them. However, this behavior is expected, as a walker should be forced away from
a gravitaitonal hill. The effects of changing the line of sight parameter σ is similar to without a
gravitational potential, as seen by the trails fusing into each other as σ is decreased.
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(a) Gaussian hill potential for σ = 0.5. (b) Gaussian hill potential for σ = 0.5.

(c) Gaussian hill potential for σ = 0.1. (d) Gaussian hill potential for σ = 0.1.

Figure 11: The Gaussian hill potential distorts the simplest path between the destinations. The
walkers still manage to slightly increase the efficiency of the path network by clumping nearby
paths together. Here, I = 0.3, T = 0.2, Gmax = 20, v0 = 20, N = 30, and ∆ = 0.0015 for 2000
time steps.
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(a) Mountain range potential for σ = 0.5. (b) Mountain range potential for σ = 0.5.

(c) Mountain range potential for σ = 0.1. (d) Mountain range potential for σ = 0.1.

Figure 12: The mountain range potential distorts the simplest path between the destinations.
The walkers still manage to optimize the network further. Here, I = 0.3, T = 0.2, Gmax = 20,
v0 = 20, N = 30, and ∆ = 0.0015 for 2000 time steps.
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(a) Pooling of walkers near the north-west city. (b) Pooling of walkers along the trails.

Figure 13: If the relative coupling to the paths is too strong compared to the coupling to the
destination, then walkers will not finish their walks. This spurious effect can be removed by
decreasing Gmax, decreasing I, decreasing T , decreasing σ, increasing v0, or decreasing the number
of walkers. The values of these parameters for which pooling occurs are by no means universal
and are sensitive to initial points of the walkers, the geometry of the cities, and the potential (if
any is present).

6 Conclusion

We have demonstrated the emergence of trail networks using the Active Walker model. These
trails were affected by various parameters, most notably σ, the visibility, I, the intensity of
stepping, and T , the regeneration rate. We devised two metrics, the efficiency and the civility,
to characterize the dynamics and the overall acceptability of a given set of trails to a system of
active walkers. We found that low values of σ created high efficiency paths, while higher values
created low efficiency, more direct pathways. In addition, changes in I and T affected both the
efficiency and civility of the created paths. We have shown that this model can be an effective
way to probe the formation of trail networks provided the values are chosen to prevent artifacts
such as pooling.
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