VMC vs DMC
 Study of the Ground State Energy of He^{4}

B. Dannowitz, B. Dellabetta, A. Ghalsasi

The University of Illinois at Urbana-Champaign
May 12, 2011

Outline

(1) Variational Monte Carlo
(2) Diffusion Monte Carlo
(3) Further Considerations

VMC Overview

- Objective: find E_{0} and test out Ψ_{T}
- Model Ψ_{T} for liquid He^{4}
- Tune a_{1} and a_{2} to find minimum

VMC Overview

- Objective: find E_{0} and test out Ψ_{T}
- Model Ψ_{T} for liquid He^{4}
- Tune a_{1} and a_{2} to find minimum

VMC Overview

- Objective: find E_{0} and test out Ψ_{T}
- Model Ψ_{T} for liquid He^{4}
- Tune a_{1} and a_{2} to find minimum

$$
E_{0} \leq \frac{1}{N} \sum_{i} \frac{\hat{\mathcal{H}} \Psi_{T}\left(\mathbf{R}_{i}\right)}{\Psi_{T}\left(\mathbf{R}_{i}\right)}=\frac{1}{N} \sum_{i} E_{L}\left(\mathbf{R}_{i}\right)
$$

VMC Overview

- Model Ψ_{T} for liquid $H e^{4}$ as $\Psi_{T}=\prod_{i<j} \exp \left[-\left(a_{1} / r_{i j}\right)^{a_{2}}\right]$

VMC Overview

- Model Ψ_{T} for liquid He^{4} as $\Psi_{T}=\prod_{i<j} \exp \left[-\left(a_{1} / r_{i j}\right)^{a_{2}}\right]$

$$
\begin{align*}
& E_{L}\left(\mathbf{R}_{i}\right)=\frac{\hbar^{2}}{2 m} \sum_{i=1}^{N} \frac{\nabla_{i}^{2} \Psi_{T}}{\Psi_{T}}+\sum_{i<j}^{N} V\left(r_{i j}\right) \tag{1}\\
& E_{L}\left(\mathbf{R}_{i}\right)=\frac{a_{2}\left(a_{2}-1\right) \hbar^{2} a_{1}^{a_{2}}}{2 m r^{a_{2}+2}}+\frac{4 \epsilon \sigma^{12}}{r^{12}}-\frac{4 \epsilon \sigma^{6}}{r^{6}}
\end{align*}
$$

VMC Overview

- Model Ψ_{T} for liquid $H e^{4}$ as $\Psi_{T}=\prod_{i<j} \exp \left[-\left(a_{1} / r_{i j}\right)^{a_{2}}\right]$

$$
\begin{align*}
E_{L}\left(\mathbf{R}_{i}\right) & =\sum_{i<j} V\left(r_{i j}\right)-2 \frac{\hbar^{2}}{2 m} \nabla^{2}\left(a_{1} / r_{i j}\right)^{a_{2}}-\frac{\hbar^{2}}{2 m} \sum_{i} G_{i}^{2} \\
E_{L}\left(\mathbf{R}_{i}\right) & =\sum_{i<j}\left[\frac{-a_{2}\left(a_{2}-1\right) \hbar^{2} a_{1}^{a_{2}}}{m r^{a_{2}+2}}+\frac{4 \epsilon \sigma^{12}}{r^{12}}-\frac{4 \epsilon \sigma^{6}}{r^{6}}\right] \tag{2}\\
& +\sum_{i} \frac{\hbar^{2}}{2 m}\left[\frac{a_{2} a_{1}^{a_{2}}}{r^{a_{2}+1}}\right]^{2} .
\end{align*}
$$

VMC Algorithm

1 Initialize box of particles: L, N, a_{1}, a_{2}
2 For each particle, i

- Propose move from \mathbf{r} to $\mathbf{r}_{\mathbf{i}}^{\prime}=\mathbf{r}_{\mathbf{i}}+\xi \frac{\mathbf{L}}{2}$
- Compute weight of move and accept with:

- Compute E_{L} as per Eq. 1 and 2
- Repeat for many combinations of a_{1} and a_{2}

VMC Algorithm

1 Initialize box of particles: L, N, a_{1}, a_{2}
2 For each particle, i

- Propose move from \mathbf{r} to $\mathbf{r}_{\mathbf{i}}^{\prime}=\mathbf{r}_{\mathbf{i}}+\xi \frac{\mathbf{L}}{\mathbf{2}}$
- Compute weight of move and accept with:

- Compute E_{L} as per Eq. 1 and 2
- Repeat for many combinations of a_{1} and a_{2}

VMC Algorithm

1 Initialize box of particles: L, N, a_{1}, a_{2}
2 For each particle, i

- Propose move from \mathbf{r} to $\mathbf{r}_{\mathbf{i}}^{\prime}=\mathbf{r}_{\mathbf{i}}+\xi \frac{\mathbf{L}}{\mathbf{2}}$
- Compute weight of move and accept with:

$$
\begin{equation*}
A\left(\mathbf{r}_{\mathbf{i}} \rightarrow \mathbf{r}_{\mathbf{i}}^{\prime}\right)=\min \left[1, \frac{\left|\Psi_{T}\left(\mathbf{r}_{\mathbf{i}}^{\prime}\right)\right|^{2}}{\left|\Psi_{T}\left(\mathbf{r}_{\mathbf{i}}\right)\right|^{2}}\right] \tag{3}
\end{equation*}
$$

- Compute E_{L} as per Eq. 1 and 2
- Repeat for many combinations of a_{1} and a_{2}

VMC Algorithm

1 Initialize box of particles: L, N, a_{1}, a_{2}
2 For each particle, i

- Propose move from \mathbf{r} to $\mathbf{r}_{\mathbf{i}}^{\prime}=\mathbf{r}_{\mathbf{i}}+\xi \frac{\mathbf{L}}{\mathbf{2}}$
- Compute weight of move and accept with:

$$
\begin{equation*}
A\left(\mathbf{r}_{\mathbf{i}} \rightarrow \mathbf{r}_{\mathbf{i}}^{\prime}\right)=\min \left[1, \frac{\left|\Psi_{T}\left(\mathbf{r}_{\mathbf{i}}^{\prime}\right)\right|^{2}}{\left|\Psi_{T}\left(\mathbf{r}_{\mathbf{i}}\right)\right|^{2}}\right] \tag{3}
\end{equation*}
$$

- Compute E_{L} as per Eq. 1 and 2
- Repeat for many combinations of a_{1} and a_{2}

VMC Algorithm

1 Initialize box of particles: L, N, a_{1}, a_{2}
2 For each particle, i

- Propose move from \mathbf{r} to $\mathbf{r}_{\mathbf{i}}^{\prime}=\mathbf{r}_{\mathbf{i}}+\xi \frac{\mathbf{L}}{\mathbf{2}}$
- Compute weight of move and accept with:

$$
\begin{equation*}
A\left(\mathbf{r}_{\mathbf{i}} \rightarrow \mathbf{r}_{\mathbf{i}}^{\prime}\right)=\min \left[1, \frac{\left|\Psi_{T}\left(\mathbf{r}_{\mathbf{i}}^{\prime}\right)\right|^{2}}{\left|\Psi_{T}\left(\mathbf{r}_{\mathbf{i}}\right)\right|^{2}}\right] \tag{3}
\end{equation*}
$$

- Compute E_{L} as per Eq. 1 and 2
- Repeat for many combinations of a_{1} and a_{2}

Implementation

- Use C++'s object-oriented language
- Benefits: Code more "ideal", main code only a few lines long
- Created two classes:

1 Particles: Have a position and a mass
2 Configuration: A box of particles w/PBC's

- Configuration contains subroutines for moving all particles, returning wave functions, calculating E_{L}, etc.

Implementation

- Use C++'s object-oriented language
- Benefits: Code more "ideal", main code only a few lines long

Created two classes:
Particles: Have a position and a mass
Configuration: A box of particles w/PRC's

- Configuration contains subroutines for moving all particles, returning wave functions, calculating E_{L}, etc.

Implementation

- Use C++'s object-oriented language
- Benefits: Code more "ideal", main code only a few lines long
- Created two classes:

1 Particles: Have a position and a mass
2 Configuration: A box of particles w/ PBC's

- Configuration contains subroutines for moving all particles, returning wave functions, calculating E_{L}, etc.

Implementation

- Use C++'s object-oriented language
- Benefits: Code more "ideal", main code only a few lines long
- Created two classes:

1 Particles: Have a position and a mass
2 Configuration: A box of particles w/ PBC's

- Configuration contains subroutines for moving all particles, returning wave functions, calculating E_{L}, etc.

Results

Results

Bryan Dannowitz, Brian Dellabetta, Akshay Ghalsasi

Results

Results

- Using Eq. 1 of calculating E_{L}
- Using Eq. 2 of calculating E_{L}

Results

- Using Eq. 1 of calculating E_{L}

- Using Eq. 2 of calculating E_{L}

Results

- Using Eq. 1 of calculating E_{L}

- Using Eq. 2 of calculating E_{L}

$\left[\begin{array}{l}\text { mean } \\ -7.2178354 \mathrm{E}-16 \\ \hline \text { error of mean- } \\ \pm 6.9 \mathrm{E}-18\end{array}\right.$
sigma
$3.8335435 \mathrm{E}-16$
autocor. time - 1.0156328 E 01
blocking factor 0
start cutoff 0.0
31499.0

mean-
$-6.9346245 \mathrm{E}-15$
error of mean $\pm 3.9 \mathrm{E}-18$
sigma-
$2.1264963 \mathrm{E}-16$
autocor. time
1.0588098 E 01
[blocking factor $]$
0
0.0
rend cutoff
31499.0

DMC Overview

DMC Overview

- In the imaginary time transform (it $\rightarrow \tau$)

$$
\begin{equation*}
\Psi\rangle(\tau+\delta \tau)=\sum c_{i} e^{\epsilon_{i} \delta \tau}\left|\psi_{i}\right\rangle \tag{4}
\end{equation*}
$$

- In imaginary time, energy states decay, not oscillate

$$
\begin{equation*}
\lim _{\tau \rightarrow \infty} \Psi(\mathbf{R}, \tau)=c_{0} e^{\epsilon_{0} \tau}\left|\psi_{0}\right\rangle \tag{5}
\end{equation*}
$$

- Using $\Psi(\mathbf{R})$, get diffusion equation for behavior with diffusion and branching
- Using $f(\mathbf{R}, \tau)=\Psi_{G}(\mathbf{R}) \Psi(\mathbf{R}, \tau)$, we also get "Drift" Term

$$
\begin{align*}
\frac{\partial f(\mathbf{R}, \tau)}{\partial \tau} & =\left[\sum_{i}-\frac{1}{2} \nabla_{i}^{2} f(\mathbf{R}, \tau)\right] \\
& -\nabla \cdot\left[\frac{\nabla \psi_{G}(\mathbf{R})}{\psi_{G}(\mathbf{R})} f(\mathbf{R}, \tau)\right]+\left(E_{L}(\mathbf{R})-E_{T}\right) f(\mathbf{R}, \tau) \tag{6}
\end{align*}
$$

DMC Overview

- Solution for this is a Green's function, $G\left(\mathbf{R}^{\prime}, \mathbf{R} ; \tau\right)$
- From Trotter's theorem, for $\tau \rightarrow 0$, we can break up diffusion equation
- Solve approximately for $G\left(\mathbf{R}^{\prime}, \mathbf{R} ; \tau\right)$

$$
\begin{equation*}
G\left(\mathbf{r}^{\prime}, \mathbf{r} ; \tau\right) \sim \operatorname{Nexp}\left(-\frac{\left(\mathbf{R}^{\prime}-\mathbf{R}-\mathbf{V}(\mathbf{R}) \tau\right)^{2}}{2 \tau} \exp \left(-\left(E_{L}(\mathbf{R})+E_{L}\left(\mathbf{R}^{\prime}\right)\right) \frac{\tau}{2}\right.\right. \tag{7}
\end{equation*}
$$

- And use this as a weight for moves:

$$
\begin{equation*}
W\left(\mathbf{R}^{\prime}, \mathbf{R}\right)=\frac{\left|\Psi_{G}\left(\mathbf{R}^{\prime}\right)\right|^{2} G\left(\mathbf{R}^{\prime}, \mathbf{R} ; \tau\right)}{\left|\Psi_{G}(\mathbf{R})\right|^{2} G\left(\mathbf{R}, \mathbf{R}^{\prime} ; \tau\right)} \tag{8}
\end{equation*}
$$

DMC Algorithm

1 Initialize Ensemble containing many Configurations of Particles For each Configuration, j

- For each particle $i: \mathbf{r}^{\prime}{ }_{i}=\mathbf{r}_{i}+\tau \mathbf{V}\left(\mathbf{r}_{i}\right)+\eta$
- Compute weight of move and accept with:

3 Calculate branching probability:

Branch n copies with $n=$ floor $\left(P_{B}+u\right) u \in[0,1)$

DMC Algorithm

1 Initialize Ensemble containing many Configurations of Particles
2 For each Configuration, j

- For each particle $i: \mathbf{r}^{\prime}{ }_{i}=\mathbf{r}_{i}+\tau \mathbf{V}\left(\mathbf{r}_{i}\right)+\eta$
- Compute weight of move and accept with:

$$
\begin{equation*}
W\left(\mathbf{R}^{\prime}, \mathbf{R}\right)=\frac{\left|\Psi_{G}\left(\mathbf{R}^{\prime}\right)\right|^{2} G\left(\mathbf{R}^{\prime}, \mathbf{R} ; \tau\right)}{\left|\Psi_{G}(\mathbf{R})\right|^{2} G\left(\mathbf{R}, \mathbf{R}^{\prime} ; \tau\right)} \tag{9}
\end{equation*}
$$

3 Calculate branching probability:
\square
Branch n copies with $n=$ floor $\left(P_{B}+u\right) u \in[0,1)$

DMC Algorithm

1 Initialize Ensemble containing many Configurations of Particles
2 For each Configuration, j

- For each particle $i: \mathbf{r}^{\prime}{ }_{i}=\mathbf{r}_{i}+\tau \mathbf{V}\left(\mathbf{r}_{i}\right)+\eta$
- Compute weight of move and accept with:

$$
\begin{equation*}
W\left(\mathbf{R}^{\prime}, \mathbf{R}\right)=\frac{\left|\Psi_{G}\left(\mathbf{R}^{\prime}\right)\right|^{2} G\left(\mathbf{R}^{\prime}, \mathbf{R} ; \tau\right)}{\left|\Psi_{G}(\mathbf{R})\right|^{2} G\left(\mathbf{R}, \mathbf{R}^{\prime} ; \tau\right)} \tag{9}
\end{equation*}
$$

3 Calculate branching probability:
$P_{B}=\exp \left(-\tau\left(\frac{E_{L}\left(R^{\prime}\right)+E_{L}(R)}{2}-E_{T}\right)\right)$
Branch n copies with $n=$ floor $\left(P_{B}+u\right) u \in[0,1)$

DMC Algorithm

4 Compute Average E_{L} over Configurations 5 After O(100 - 1000) Configuration moves:

- $E_{T}=\left\langle E_{L}\right\rangle$
- Randomly branch / destroy Configurations to normalize 6 Repeat

DMC Algorithm

4 Compute Average E_{L} over Configurations
5 After $O(100-1000)$ Configuration moves:

- $E_{T}=\left\langle E_{L}\right\rangle$
- Randomly branch / destroy Configurations to normalize

6 Repeat

DMC Algorithm

4 Compute Average E_{L} over Configurations
5 After $O(100-1000)$ Configuration moves:

- $E_{T}=\left\langle E_{L}\right\rangle$
- Randomly branch / destroy Configurations to normalize

6 Repeat

DMC Algorithm

4 Compute Average E_{L} over Configurations
5 After $O(100-1000)$ Configuration moves:

- $E_{T}=\left\langle E_{L}\right\rangle$
- Randomly branch / destroy Configurations to normalize

6 Repeat

DMC Implementation

- Created three classes:

1 Particles: Have a position and a mass
2 Configuration: A box of particles w/ PBC's
3 Ensemble: A set of configurations

- Configuration contains subroutines for:

1 Moving all particles
2 Returning wave functions, Green's functions
3 Calculating EL

- Ensemble contains subroutines for

1 Branching, destroying configurations
2 Measuring average E_{L} over all configurations
3 Adjusting E_{T}

DMC Implementation

- Created three classes:

1 Particles: Have a position and a mass
2 Configuration: A box of particles w/ PBC's
3 Ensemble: A set of configurations

- Configuration contains subroutines for:

1 Moving all particles
2 Returning wave functions, Green's functions
3 Calculating E_{L}

- Ensemble contains subroutines for

1 Branching, destroying configurations
2 Measuring average E_{L} over all configurations
3 Adjusting E_{T}

DMC Implementation

- Created three classes:

1 Particles: Have a position and a mass
2 Configuration: A box of particles w/PBC's
3 Ensemble: A set of configurations

- Configuration contains subroutines for:

1 Moving all particles
2 Returning wave functions, Green's functions
3 Calculating E_{L}

- Ensemble contains subroutines for :

1 Branching, destroying configurations
2 Measuring average E_{L} over all configurations
3 Adjusting E_{T}

Preliminary Results

Preliminary Results

Better Wave Functions

Boronat's Jastrow Trial Wave Function gave us odd results, but could be revisited

$$
\Psi_{T}=\prod_{i<j} \exp \left[-\frac{1}{2}\left(\frac{b}{r_{i j}}\right)^{5}-\frac{L}{2} \exp \left(-\left(\frac{r_{i j}-\lambda}{\Lambda}\right)^{2}\right)\right]
$$

Thank You

國 W. L. McMillan
Ground state of liquid He^{4}..
Phys. Rev., 138(2A):A442-A451, Apr 1965
E J. Boronat and J. Casulleras
Monte carlo analysis of an interatomic potential for He . Phys. Rev. B, 49(13):8920-8930, Apr 1994
亩 R. A. Aziz, F. R. W. McCour, and C. C. K. Wong
A new determination of the ground state interatomic potential for He_{2}.
Mol. Phys., 61:1487, 1987

