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Chapter 1

Introduction

Fundamental understanding of nuclear fuel materials has of major interest in
order to predict fuel performance. One major area of work is the study of
diffusion of defects, as these can affect the mechanical properties of the fuel
elements. Conventional methods and fuel performance codes have relied mostly
on chemical rate theories and experimental data to model fuel performance.
More recently, as computational power has evolved, modeling work of nuclear
fuel materials at the atomic level has been carried out. However, this subject
remains a big challenge today, due to the unavailability of reliable interatomic
atomic potentials. These potentials can be used to predict multiple mechanical
and thermodynamic properties, defect chemistry and defect transport phenom-
ena, but because of the way they are derived (often by fitting parameters to
experimental data, or from first principles calculations), they are often unable
to accurately predict multiple material properties simultaneously. For example,
using a potential derived by fitting parameters to experimentally determined
lattice constants in an atomic scale simulation might very accurately reproduce
measured lattice constants for different systems, but might fail to accurately
reproduce the measured specific heat for the same systems. When attempting
to simulation defect diffusion, it therefore critical that the interatomic potential
used be validated before it is used to predict results.

The goal of this study is to develop a generalized kinetic Monte Carlo (KMC)
code to simulate defect diffusion that can be used both as a validation tool and
as a predictive tool. This code uses migration energies that depend on the
migrating particle’s local atomic environment. These migration energies are
calculated in advance, using Molecular Dynamics (MD) simulations with the
desired interatomic potential. As a validation tool, the code would be run using
migrations energies generated from the desired interatomic potential and the
results would be compared to experimental data. As a predictive tool, the code
would be run using migration energies generated from a validated interatomic
potential in order to predict data that has not yet been obtained experimentally.

Uranium oxide (UO2) is the primary fuel used in most nuclear power plants
in the United States today. However, because it is radioactive, there are many
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practical difficulties involved with studying it experimentally. Cerium oxide
(CeO2) has attracted a lot of attention as a surrogate for uranium oxide be-
cause it exhibits many of the same material properties, but is not radioactive.
Thus, but studying defect transport and interactions in cerium oxide, similar
insight can be gained into defect transport and interactions in uranium oxide.
To demonstrate this code as a validation tool, the effect of dopant concentration
on oxygen diffusivity in lanthanum-doped cerium oxide is calculated using three
different interatomic potentials and compared to experimental data. Lanthanum
was chosen as the dopant species mainly because lanthanum is a common fission
product created by nuclear fission, so understanding the effects of lanthanum in
cerium oxide helps in the understanding of the effects of lanthanum in uranium
oxide fuel, and also because, as will be explained later, lanthanum introduces a
controllable level of oxygen vacancies, which can help clarify the hypostoichio-
metric effects in cerium oxide and uranium oxide.

3



Chapter 2

Background

Most of the past interest in pure ceria (CeO2) and doped ceria materials have
involved their applications in the automotive industry. Ceria has been studied
extensively for its use in catalysis and oxygen sensing in automobile exhaust/e-
mission systems [1]. It has also gained recent attention as a candidate for fuel
cell electrodes [1] because of its high electrical conductivity and high thermal
stability. These studies have provided significant insight into the understanding
of material properties and defect chemistry of ceria and doped ceria materials.

2.1 Material Properties and Defect Chemistry
of Ceria

Cerium(IV) oxide (CeO2) crystallizes in the fluorite crystal structure with lattice
constant a = 5.41134(12) Å. The fluorite structure consists of a face-centered
cubic (f.c.c.) unit cell of cations with anions occupying the octahedral interstitial
sites. This can also be seen as a superposition of an f.c.c. lattice of cations
(Ce4+) with lattice constant a, and a simple cubic (s.c.) lattice of anions (O2−)
with lattice constant a/2. In this structure (shown schematically in Figure 2.1),
each cerium cation is coordinated by eight nearest-neighbor oxygen anions, while
each oxygen anion is coordinated by four nearest-neighbor cerium cations.

Fluorite structure oxides exhibit similar material properties, such as high
radiation tolerance and high thermal stability. Cerium oxide is attractive as a
surrogate for uranium oxide because it has the same fluorite crystal structure
and many similar material properties, including melting temperature (UO2 :∼
2870 ∘C, CeO2 :∼ 2600 ∘C) and thermal diffusivity, and has been well charac-
terized experimentally up to 700 ∘C [2][3][4][5][6].

While ionic conductivity is believed to be negligible in pure ceria, it increases
significantly when ceria is doped with an aliovalent oxide like Y2O3 and La2O3.
The open structure of the fluorite lattice is able to tolerate the high level of
atomic disorder that would be introduced by this type of doping. When ceria is
doped with a trivalent ion like Lanthanum which forms La2O3, a local charge
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Figure 2.1: Schematic of CeO2 unit cell.

imbalance is created. The lattice must compensate for this excess negative
charge using one of three mechanisms: vacancy compensation, dopant intersti-
tial compensation, and cerium interstitial compensation [7]. The mechanisms
can be represented in Kröger-Vink notation:

M2O3
CeO2←→ 2M ′Ce + V ⋅⋅O + 3O×O (2.1)

2M2O3
CeO2←→ 3M ′Ce +M ⋅⋅⋅i + 6O×O (2.2)

Ce×Ce + 2O×O + 2M2O3
CeO2←→ 4M ′Ce + Ce⋅⋅⋅⋅i + 8O×O (2.3)

In vacancy compensation (Equation 2.1), an anion vacancy is produced for every
two dopant ions placed on the host cation sites. In dopant interstitial compen-
sation (Equation 2.2), one dopant cation is placed in on interstitial site for every
three dopant cations that are placed on the host cation sites. In cerium intersti-
tial compensation (Equation 2.3), a cerium Frenkel pair is produced and the dis-
placed cerium cation is placed on an interstitial site for every four dopant cations
placed on the host cation sites. Empirical calculations performed by Minervini
et al. show that for large dopant cations (cation radius > 0.8 Å), vacancy com-
pensation is the preferred charge compensation mechanism [7]. Blumenthal et
al. also ruled out the formation of interstitial as the compensation mechanism
by measuring true density and comparing it with calculated values [8]. In terms
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of dopant solute concentration, the vacancy compensation mechanism can be
represented by:

xMO1.5+(1−x)CeO2 ←→ xM ′Ce+0.5xV ⋅⋅O +(1−x)CeCe+(2−0.5x)OO (2.4)

This reactions implies that when x/2 moles of dopant oxide (M2O3) are added,
cation sites are filled with x moles of dopant cation (M3+) and (1 − x) moles
of host cation (Ce4+), while anion sites are filled with (2 − x/2) moles of host
anion (O2−) and x/2 moles of anion vacancies (V⋅⋅O). Therefore, a predictable
concentration of oxygen vacancies can be introduced into the crystal by con-
trolling the concentration of the lanthanum dopant added. This process can be
used to create an oxygen vacancy environment that is similar hypostoichiometric
configuration of pure ceria.

2.2 Previous Computational Work on Ceria re-
lated Materials

Simulation techniques have been used to study a wide range of material prop-
erties over a wide range of length and time scales, including thermodynamic
properties, defect structure and clustering, defect clustering, and transport phe-
nomena. Techniques ranging from Density Functional Theory (DFT), a quan-
tum mechanical theory used to study electron structure over a couple of atoms
for a matter of picoseconds, to Finite Element Method (FEM), which can used
to study structures as large as a reactor core over a matter of years, each have
their own applications and advantages/disadvantages. Figure shows the clas-
sic illustration of the application of various modeling techniques of the vast
time and length scales of interest. This study links the results from several
different time/length scales. At the lowest level, the starting point, are the po-
tentials for the La-doped ceria system that have been developed, either through
DFT calculations or from fitting to experimental data. These potentials are
fed into Molecular Dynamics (MD) simulations to calculate local configuration-
dependent oxygen vacancy migration energies. These migration energies are
then fed into KMC simulations to calculate oxygen diffusivity.

Since its development in the 1970s, Molecular Dynamics has been widely
used to predict various material properties. However, while it has been used
extensively in metal and metal alloy systems, its use in ceramic oxide systems
has been comparatively lacking. This is likely due to a lack of confidence in
available interatomic potentials. While the potentials in metal and metal alloy
systems have been well developed and validated by experimental results, the
potentials for ceramic alloys generate results that are not always consistent
with experimental data.

Since the the understanding of atomic level interactions is very important
in nuclear fuel research, a series of studies have been done to model and un-
derstand the thermodynamics and defect chemistry of uranium oxide (UO2)
[9][10][11][12][13][14][15][16][17][18]. An extensive literature review was provided

6



Figure 2.2: Visualization of computational modeling techniques shown over the
length and time scales that they apply to.

by Grovers et al. [19][20], where all of the available interatomic potentials on
UO2 were compared. They found that none of the potentials reviewed could
predict all of the thermodynamic, mechanical, and defect transport properties.
For example, they found that oxygen vacancy migration energies obtained from
simulations ranged from 0.1 eV to 0.7 eV, while the experimentally measured
energy was found to be 0.5 eV. Similarly, oxygen interstitial migration energies
obtained from simulations ranged from 0.1 eV to 3.6 eV, while the experimen-
tally measured energies ranged from 0.9 eV to 1.3 eV. These discrepancies could
be attributed to the fact that all of the potentials reviewed were obtained by fit-
ting parameters to experimentally measured properties, such as lattice constant,
lattice energy, dielectric constants, etc. As most of these potentials were fitted
without considering defect energetics, their inability to accurately predict these
values is possibly unavoidable. This survey also demonstrated the importance
of testing and validating potentials before using them for predictive purposes.

While there are nineteen interatomic potentials available for UO2, there are
only a few potentials available for CeO2, and even fewer with dopant param-
eters. Through an extensive literature survey conducted by Dr. Di Yun, only
eight potentials for CeO2 were found. From those eight, three were selected for
comparison in this study. Similar to what was found Grovers’ literature review
for UO2 [19][20], all of the potentials found for CeO2 were in two forms.
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The first potential form consists of the addition of a Buckingham term to
the basic Coulomb potential. This form can be described by:

Vij (r) =
qiqje

2

4��0
+Aij exp

(
− r

�ij

)
− Cij

r6
(2.5)

where Vij is the pair potential between atoms i and j, r is the distance between
atoms i and j, and qi,qj are the charges of atoms i and j, respectively. The pair
parameters Aij , �ij , and Cij are free parameters that are obtained by fitting to
material properties as discussed earlier. This potential can be extended to take
the polarization effects of the nucleus and electron shell into account by using
the shell-core model developed by Dick and Overhauser [21]. In this model,
the charged nucleus and electron cloud are treated as a massless, negatively
charged shell bound by a spring to a massive, positively charged core. The
spring constant for this model is determined by the polarizability of the atoms
being modeled.

The second potential form consists of the addition of a Morse potential to
the Buckingham potential form in Equation 2.5, which is used to describe the
covalent bonding between the anions and cations. This form can be described
by:

Vij (r) =
qiqje

2

4��0
+ f0 (bi + bj) exp

(
ai + aj − r
bi + bj

)
− CiCj

r6
(2.6)

where ai,aj ,bi,bj ,ci, and cj are the free parameters that are obtained by fitting
to material properties as discussed earlier. Table 2.1 lists the fitted parameters
for the potentials considered in this study.

Previous work has been done using both modeling and experimental tech-
niques to investigate the clustering of oxygen vacancies around dopant ions in
ceria doped with trivalent ions (in this system, the lanthanum trapping effect).
Wang et al. showed that in the dilute range, charged dimers (M ′Ce : V ⋅⋅O ) form
[24]. Gerhardt-Anderson and Nowick extended this work on other CeO2 : M2O3,
and suggested that conductivity and dimer binding energy vary inversely with
dopant cation radius [25]. Kilner and Brook found that due to the size mis-
match between the host and dopant cations, elastic strain energy makes a large
contribution to the binding energy of the dimer [26]. Subsequent theoretical
studies also showed the importance of defect clustering in the determination of
free charge carrier concentration in fluorite oxides [27][28][29].

Previous work has also been carried out to validate this type of local con-
figuration dependent kinetic Monte Carlo technique. Murray et al. carried
out one of the earliest investigations modeling oxygen vacancy conductivity in
yttria-doped cerium oxide [30]. They showed that the oxygen vacancy barrier
is sensitive to the local dopant environment and that a first nearest neighbor
approximation could generate ionic conductivity results that are somewhat con-
sistent with experimental results. Pornprasertsuk et al. used a similar KMC
approach by calculating the binding energies of the oxygen vacancies and dopant
ions in Yttria-stabilized zirconia [31]. They showed that the association energy
of oxygen vacancies and dopant ions was big enough compared to the oxygen
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Table 2.1: Shell-core parameters for Buckingham form pair potentials in CeO2.
Parameters Units Potentials

Gotte [22] Minervini [7] Sayle [23]
O shell charge e -6.5667 -2.04 -6.1
O core charge e 4.5667 0.04 4.1

O spring constant eV/Å2 1759.8 6.3 419.9
Ce shell charge e 4.6475 4.2 7.7
Ce core charge e -0.6475 -0.2 -3.7

Ce spring constant eV/Å2 43.451 177.84 291.75
O - O interactions

A eV 9533.421 9547.96 22764.3
� Å 0.234 0.2192 0.149
C Å6 224.88 32 43.83

O - Ce interactions
A eV 755.1311 1809.68 1986.83
� Å 0.429 0.3547 0.35107
C Å6 0 20.4 20.4

O - La interactions
A eV 2088.79
� Å 0.346
C Å6 23.25

vacancy migration barrier to make the vacancy migration energy depend on the
local dopant environment. These studies helped to validate the use of local
configuration-dependent migration energies in kinetic Monte Carlo simulations,
but these codes were written specifically for the systems in question. The goal
of this study was to create a generalized code that could be used to simulate
arbitrary systems with arbitrarily complex local configurations, so long as the
migration energies for these configurations are known.
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Chapter 3

Molecular Dynamics

The primary goal of this work is to develop a generalized KMC code, however it
is also important to verify and demonstrate the functionality of the code after
it is completed. In this study, the code is demonstrated by comparing using
diffusivity results generated from KMC simulations of three different interatomic
potentials. This requires not only an explanation of the KMC code developed,
but also an explanation of the Molecular Dynamics simulations carried out to
produce migration energies from the selected potentials.

For this study, molecular dynamics simulations were performed to determine
local configuration dependent migration energies using the selected interatomic
potentials.

3.1 Background

At the most basic level, Molecular Dynamics (MD) evolves an atomic system
using Newton’s classical equation of motion:

F⃗ = ma⃗ (3.1)

The system is initialized to some initial state, where each particle in the system
has an initial position and an initial velocity. Even without the presence of an
external force field (e.x. gravity), each particle experiences some force due to
its configurational potential energy:

F⃗ (r⃗) = −∇V (r⃗) (3.2)

In general, the form of this potential energy function could be arbitrarily com-
plex, but in most cases the potential is simplified down to a two or three particle
interaction. This is done primarily because of the computational expense of
evaluating the potential energy function. In this study, the selected interatomic
potentials are all pairwise interactions. The form of these potentials is given in
Equation 2.5, with the corresponding fitted parameters given in Table 2.1. Once
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the form of the potential energy function is known, the corresponding force can
be derived from Equation 3.2. The acceleration of each particle at a given time
step can then be calculated by rearranging Equation 3.1:

a⃗ =
F⃗

m
(3.3)

Once the acceleration of each particle is known, an integrator is used to evolve
the position and velocity of each of the particles in the system by one time step.
One of the most popular integrators, which is also the integrator used by the
code in this study, is the Verlet leapfrog algorithm given by:

r⃗(t+ ℎ) = r⃗(t) + ℎv⃗

(
t+

1

2
ℎ

)
(3.4)

v⃗

(
t+

1

2
ℎ

)
= v⃗

(
t− 1

2
ℎ

)
+ ℎa⃗(t) (3.5)

where t is the current time and ℎ is the time step used. The name “leapfrog”
comes from the fact that the positions and velocities are calculated at staggered
time steps, so the positions and velocities appear to “leapfrog” over each other.
These calculates are fairly easy to evaluate, so most of the computational time
from an MD simulation is spent in the evaluation of forces. Since the configura-
tional force on a single particle depends on the position of every other particle
in the system, evaluating this force is very computationally expensive especially
as the complexity of the potential is increased.
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3.2 Migration Energy Calculations

In order to calculate the oxygen vacancy migration energies from MD, a simula-
tion volume consisting of 4× 4× 4 conventional unit cells of CeO2 (768 atoms)
is used. Periodic boundary conditions are applied to this volume to extend the
system infinitely in each direction, allowing for the calculation of bulk material
properties by eliminating boundary surface effects. A vacancy defect is gen-
erated and a local dopant environment is created by substituting La dopant
atoms as necessary at the appropriate neighboring cation sites (shown schemat-
ically in Figure 3.1). The defect energy is calculated for the system at varying
points along the migration pathway ( so that the minimum (stable) energy and
maximum (saddle-point) energy for the migration can be found. The migration
energy for the configuration is then calculated as the difference between the
saddle point energy and stable configuration energy.

Figure 3.1: Schematic representation of the migrating vacancy and local dopant
environment used to model vacancy migration in La-doped CeO2 [31]. The
arrow shows the migration pathway of the oxygen atom (opposite pathway of
the oxygen vacancy), the square shows the initial position of the vacancy after
migration, and the 6 numbered cation sites show the local configuration sites
that are considered.

3.3 GULP Defect Energy Calculations

The MD simulations in this study are performed using the GULP (General
Utility Lattice Program) code [32], which uses the Mott-Littleton approach
[33] to estimate defect energies. In this approach, the environment around the
defects is broken up into three regions by two concentric spheres. In the smallest
concentric sphere (Region I), the ions are assumed to be strongly perturbed by
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Figure 3.2: Defect energy along the oxygen vacancy migration pathway [31].
Migration energy is calculated as the difference between the saddle point and
minimum energies.

the presence of defect and are explicitly relaxed with respect to their Cartesian
coordinates. In the second concentric sphere (Region Ia), the ions are assumed
to be weakly perturbed by the presence of the defect, so their displacements
can be approximated. The area outside the second concentric sphere (Region
IIb) is treated as a dielectric medium. Using this approach, both the energy
minima (corresponding to stable defect configurations) and energy maximum
(corresponding to the migration saddle point plane) can be considered. Since
the migration energy is the difference between the saddle point energy and the
stable configuration energy, the Mott-Littleton approach is very convenient for
this work.

Since varying the Region I and Region II sizes strongly affects the defect
energy calculation, it is important to be sure that the these sizes are chosen
correctly. As the region sizes increase, the approximates made will become
increasingly valid, but at the same time the computational cost will increase
substantially. It is important to find a compromise between these two, as region
sizes much be large enough that the defect energies are converged, but small
enough to be computed in a reasonable amount of time. To find the best region
sizes, the defect minimum and saddle point energies were calculated with varying
region sizes in the two extreme dopant cases: will no nearest neighbor lanthanum
dopant ions and with all six nearest neighbor dopant ions. These simulations
were performed by Dr. Di Yun, using yttrium as the dopant, but the results are
transferable to other dopant cases. The results of these simulations are given in
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Table 3.1: Defect energies for varying Region I and II sizes. Region sizes are in
Å, energies are in eV. Results courtesy of Dr. Di Yun.

Sizes Defect energy Migration Energy
no dopant 6 dopants

minimum saddle minimum saddle no dopant 6 dopants
9-21 15.5 15.864 214.627 215.361 0.364 0.7338
10-23 15.488 15.8462 214.569 215.304 0.3582 0.7351
11-24 15.4737 15.8273 214.553 215.293 0.3536 0.7393
12-25 15.4695 15.8209 214.522 215.262 0.3514 0.7395
13-30 15.4654 15.8165 214.513 215.252 0.3511 0.7386
14-31 15.4616 15.8136 214.501 215.238 0.352 0.7372
15-33 15.4623 15.8114 214.498 215.237 0.3491 0.7389
16-35 15.4624 15.8168 214.495 215.236 0.3544 0.7409

Table 3.1. These results show that defect energy drops with increasing region
sizes, as long as the region size is small. After the region sizes reach 12Å-25Å,
the energies converge to reasonably stably values and stay stable for further
region size increases. The results also show that the oxygen vacancy migration
energies become stable above region sizes of 12Å-25Å. Increasing the Region I
size from 12Å to 13Å resulted in an almost 43% increase in computational time,
so the final region sizes of 12Å-25Å were selected for calculating the migration
energies.

3.4 Results

With the optimal Region I and II sizes determined, the defect energies and
resulting oxygen vacancy migration energies were calculated using the three
selected interatomic potentials. These simulations were performed by Dr. Di
Yun. The calculated migration energies are provided in Table 3.2. There is
a significant amount of symmetry in this system, so there are only 30 unique
configurations that need to be considered, but the results energies for all 64
configurations are presented here for the sake of consistency. These configuration
dependent migration energies can now be used in KMC simulations.

Table 3.2: Calculated oxygen vacancy migration energies for all
nearest-neighbor cation configurations. Positional numbers are
based on the schematic shown in Figure 3.1. Results courtesy of
Dr. Di Yun.

1 2 3 4 5 6 Gotte [22] Minervini [7] Sayle [23]
Ce Ce Ce Ce Ce Ce 0.3276 0.3063 0.7489
La Ce Ce Ce Ce Ce 0.1477 0.1278 0.5366
Ce La Ce Ce Ce Ce 0.1477 0.1278 0.5366

Continued on Next Page. . .
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Table 3.2 – Continued
1 2 3 4 5 6 Gotte [22] Minervini [7] Sayle [23]

Ce Ce La Ce Ce Ce 1.0259 1.1403 1.4723
Ce Ce Ce La Ce Ce 1.0259 1.1403 1.4723
Ce Ce Ce Ce La Ce 0.5232 0.3758 0.6324
Ce Ce Ce Ce Ce La 0.5232 0.3758 0.6324
La La Ce Ce Ce Ce 0.0666 0.0928 0.1889
La Ce La Ce Ce Ce 0.7812 0.9167 1.4425
La Ce Ce La Ce Ce 0.7812 0.9167 1.4425
La Ce Ce Ce La Ce 0.3461 0.1885 0.4775
La Ce Ce Ce Ce La 0.3444 0.2181 0.8875
Ce La La Ce Ce Ce 0.7812 0.9167 1.4425
Ce La Ce La Ce Ce 0.7812 0.9167 1.4425
Ce La Ce Ce La Ce 0.3444 0.2181 0.8875
Ce La Ce Ce Ce La 0.3461 0.1885 0.4775
Ce Ce La La Ce Ce 1.789 2.1444 1.0307
Ce Ce La Ce La Ce 1.193 1.1141 2.231
Ce Ce La Ce Ce La 1.193 1.1141 2.231
Ce Ce Ce La La Ce 1.193 1.1141 2.231
Ce Ce Ce La Ce La 1.193 1.1141 2.231
Ce Ce Ce Ce La La 0.7604 0.4723 1.0875
La La La Ce Ce Ce 0.487 0.6244 0.8691
La La Ce La Ce Ce 0.487 0.6244 0.8691
La La Ce Ce La Ce 0.1307 0.1646 0.2703
La La Ce Ce Ce La 0.1307 0.1646 0.2703
La Ce La La Ce Ce 1.4549 1.8173 1.7113
La Ce La Ce La Ce 0.9503 0.8765 1.0021
La Ce La Ce Ce La 0.9539 0.9127 1.0109
La Ce Ce La La Ce 0.9503 0.8765 1.0021
La Ce Ce La Ce La 0.9539 0.9127 1.0109
La Ce Ce Ce La La 0.5811 0.2754 0.4875
Ce La La La Ce Ce 1.4549 1.8173 1.7113
Ce La La Ce La Ce 0.9539 0.9127 1.0109
Ce La La Ce Ce La 0.9503 0.8765 1.0021
Ce La Ce La La Ce 0.9539 0.9127 1.0109
Ce La Ce La Ce La 0.9503 0.8765 1.0021
Ce La Ce Ce La La 0.5811 0.2754 0.4875
Ce Ce La La La Ce 1.8705 1.949 1.9202
Ce Ce La La Ce La 1.8705 1.949 1.9202
Ce Ce La Ce La La 1.3835 1.0907 1.3448
Ce Ce Ce La La La 1.3835 1.0907 1.3448
La La La La Ce Ce 1.0656 1.4646 1.3181
La La La Ce La Ce 0.6648 0.6118 0.7476
La La La Ce Ce La 0.6648 0.6118 0.7476
La La Ce La La Ce 0.6648 0.6118 0.7476

Continued on Next Page. . .
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Table 3.2 – Continued
1 2 3 4 5 6 Gotte [22] Minervini [7] Sayle [23]

La La Ce La Ce La 0.6648 0.6118 0.7476
La La Ce Ce La La 0.3634 0.1166 0.3282
La Ce La La La Ce 1.559 1.6416 1.4669
La Ce La La Ce La 1.54 1.6403 1.4692
La Ce La Ce La La 1.1541 0.881 1.0491
La Ce Ce La La La 1.1541 0.881 1.0491
Ce La La La La Ce 1.54 1.6403 1.4692
Ce La La La Ce La 1.559 1.6416 1.4669
Ce La La Ce La La 1.1541 0.881 1.0491
Ce La Ce La La La 1.1541 0.881 1.0491
Ce Ce La La La La 1.8676 1.6653 1.7879
Ce La La La La La 1.5779 1.3804 1.3728
La Ce La La La La 1.5779 1.3804 1.3728
La La Ce La La La 0.8811 0.6319 0.7995
La La La Ce La La 0.8811 0.6319 0.7995
La La La La Ce La 1.1748 1.2985 1.0975
La La La La La Ce 1.1748 1.2985 1.0975
La La La La La La 1.245 1.0795 1.0531

These calculated energies already provide some confirmation of the lan-
thanum trapping effect. For example, comparing the 2nd and 3rd configurations
(which correspond to an oxygen vacancy moving towards a lanthanum cation)
with the 6th and 7th configurations (which correspond to an oxygen vacancy
moving away from a lanthanum cation) shows that in all three potentials it is
easier (lower migration energy) for the oxygen vacancy to move toward a lan-
thanum cation than it is to move away from a lanthanum cation. These energies
confirm the tendency of oxygen vacancies to cluster around the lanthanum ions.
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Chapter 4

Kinetic Monte Carlo

4.1 Background

The conventional methods for validating potentials are mainly through molec-
ular dynamics simulations. The potentials are used to evolve a system in MD,
and the results are compared with experimental data such as lattice expansion/-
contraction with varying temperatures or with varying dopant concentrations.
However, due to the time scale limitations of MD simulations (usually limited
to evolving on the order of picoseconds), it is difficult to use MD results to
compare with experimental results for longer term diffusion or defect structure
evolution. Kinetic Monte Carlo (KMC) provides a way to solve this problem.
By simulating the atomic jumps between lattice sites as unit events, the time
scale can be extended by orders of magnitude compared to the small atomic
vibrations simulated in MD.

Kinetic Monte Carlo simulations follow a relatively straightforward algo-
rithm. For a system where some processes (in this case atomic migrations) can
occur with known rates ri, the KMC evolution of the system is governed by the
following algorithm:

1. Initialize simulation time to t = 0.

2. Form a list of all possible rates in the system ri.

3. calculate the cumulative function Ri =
∑i

j=1 ri for each rate i = 1, . . . , N .
Let R = RN be the total rate sum. (This can be thought of as calculating
a discrete cumulative distribution function from the discrete probability
density function ri, although this is not technically true because the prob-
ability density function is not normalized.)

4. Generate a uniform random number �1 ∈ (0, 1].

5. Find the event to carry out i by finding the i such that Ri−1 < �1R ≤ Ri.
(This can be thought of as inverting the previously calculated cumulative
distribution function.)
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6. Carry out event i.

7. Recalculate all rates ri that may have changed due the event that was
carried out. If necessary, remove or add any new rates to the list of
possible rates.

8. Generate a new random number �2 ∈ (0, 1].

9. Update the simulation time with t = t+ Δt, where Δt = − ln (�2)/R.

10. Return to step 2 and repeat until the desired number of steps have been
carried out.

In this context, the rates in question are the oxygen vacancy migration rates.
These migration events are thermally activated, with a migration rate given by
[34]:

ri = �0 exp

(
−ΔEi

m

kbT

)
(4.1)

where ri is the rate of migration for the event i, �0 is the migration attempt
frequency, taken to be 1.0×1013Hz, ΔEi

m is the migration energy for the event i,
kb is the Boltzmann constant, and T is the absolute temperature of the system.

4.2 Original Code

In order to facilitate the development of the generalized code, a very basic KMC
simulation code was provided by Dr. Chaitanya Deo at the Georgia Institute
of Technology. This code was written specifically to study oxygen interstitial
diffusion in uranium oxide. The design of this code was such that attempting
to extend it would have been more trouble that it was worth, so a new code
was written based loosely on the structure of the original code. In order to
better explain the work done in this study, the structure of this original code is
explained here. In these explanations certain words are capitalized to indicate
that they refer to the corresponding data object in the code: Entity, Action,
Event, Arrangement, Restriction.

This code starts by reading in the system parameters from an input file.
These values include things like simulation system dimensions, system temper-
ature, number of steps to run, and particle populations, and are specified as
key-value pairs (see Listing 4.1). A list is created for the particle objects, and
for each particle, a random position initial position is generated such that the
position falls on the required sublattice for that particle. Both the lattice type
and sublattice types for each particle type are hard-coded, which presents a
problem for generalization. If a new interacting particle is to be added to the
system, the code must be modified and rebuilt so the input parsing routine can
read the particle’s population and so the initial position generator can tell which
sublattice the particle should have a position on.
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Listing 4.1: Original code configuration input file.

## kmc con t r o l input f i l e
s i z e X 15
s i z e Y 15
s i z e Z 15
Temperature 1073
number vacancy 0
number hydrogen 0
number IOx 34
monte ca r l o s t ep s 500000
boltzmann 8.61738 e−5
l a t t i c e 1

Listing 4.2: Original code actions input

#[0] type [ 1 ] Ent ity [ 2 ] Sub l a t t i c e [ 3 ]E [ 4 ] v0 [5−7] d [ 0 1 2 ]
migrat ion 3 1 1 .30 1e13 2 0 2
migrat ion 3 1 1 .30 1e13 2 0 −2
migrat ion 3 1 1 .30 1e13 2 2 0
migrat ion 3 1 1 .30 1e13 2 −2 0
migrat ion 3 1 1 .30 1e13 0 −2 2
migrat ion 3 1 1 .30 1e13 0 2 2
migrat ion 3 1 1 .30 1e13 0 −2 −2
migrat ion 3 1 1 .30 1e13 0 2 −2
migrat ion 3 1 1 .30 1e13 −2 0 2
migrat ion 3 1 1 .30 1e13 −2 0 −2
migrat ion 3 1 1 .30 1e13 −2 −2 0
migrat ion 3 1 1 .30 1e13 −2 2 0

After the list of particles objects is created, the list of possible migration
actions is read in from an input file. This includes the associated particle type-
/sublattice, attempt frequency, migration direction, and migration energy, and
is specified in a multicolumn format (see Listing 4.2). When this data is read
in, it is stored as a list of Action objects, which contain the specified infor-
mation, as well as the migration rate for this action. Since these migration
actions are assumed not to depend on the local configuration, once the action
has been read it, all of the required information to calculate the migration rate
from Equation 4.1 is known, so the migration rates are calculated and stored
with the Action object. This presents a problem for generalization, as when the
energy is allowed to depend on the local configuration, the migration rates could
potentially change value at every time step for each particle in the system.

After both the Entity list and Action list have been initialized, the system
is ready to be evolved. An event catalog of all of the possible migration events
(step 2 of the general KMC algorithm in Section 4.1) is generated by scanning
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through the Entity list and Action list and checking each possible combination.
For each combination of Entity and Action, a list of checks is performed to see
if the pair is a valid migration event. This includes checking that the particle
type that the action acts upon and the particle type of the paired Entity match
and checking that the sublattice that the actions acts upon and the sublattice
of the paired particle match. This is necessary as the lists can contain Entities
and Actions for different particles on different sublattices, and it is important
that the Entity and Actions selected for an Event are compatible (for example,
attempting to apply an oxygen vacancy migration action on the fluorite tetra-
hedral interstitial sublattice to an oxygen interstitial on the fluorite octahedral
interstitial sublattice would be a mistake). A check is also performed on the pro-
posed final position of the particle to ensure that the final position is currently
unoccupied (as moving a particle to a position where a particle already exists
is not possible). As it will be shown later, this step, while necessary, is very
computationally expensive because of the way the Entity objects are stored. If
an Entity/Action pair passes all of the checks, it is considered a possible event,
and Event object consisting of the Entity/Action pair is added to the event
catalog.

Once the list of all possible events has been generated, a single event is chosen
to be carried out. Since the migration energy for each event was assumed to
be constant, the rates for all of these events are already known, so the partial
sums of these rates are calculated and an event is randomly selected (steps 3-5
of the general KMC algorithm in Section 4.1). The event is carried out (step
6 of the general KMC algorithm in Section 4.1) by applying the Action to the
Entity’s position and updating the Entity object’s internal position information.
The simulation time is then updated using according to steps 8-9 of the general
KMC algorithm in Section 4.1. At this point, the event catalog is no longer
consistent with the system, so it is emptied in preparation for the next time
step. The system loops over this process for the desired number of time steps.

Once the system has finished its evolution (i.e. the specified number of time
steps have been carried out), the diffusion coefficient is calculated by:

D =
< x2 >

6t
(4.2)

where D is the diffusion coefficient, < x2 > is the average squared displacement
of the diffusing particles, and t is the calculated simulation time.

4.3 Generalized KMC Code

While the overall idea behind the original code was well thought out, the imple-
mentation of the idea was not going to be sufficient for extension in the areas
this work was looking to study. As a result, a new code was written that used
the same overall idea from the original code (representing particles and actions
Entity and Action objects, selectively pairing them into Events, then picking
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one and evolving the system), but restructured in a way that corrected the limi-
tations described in Section 4.2, along with other implementational details. The
major changes and extensions are outline here.

4.3.1 Positional Grid

Of primary concern was the handling of the particle positions. In the original
code, while it was straightforward to get a specific particle’s position, the reverse
was not so straightforward. This caused a significant increase in computational
complexity in the overall code run, specifically because of the Event validation
checks. After a specific Entity and Action are confirmed to be a compatible
pair, a check is performed to see if the final position after migration is already
occupied. If it is occupied, the move is rejected, and if it is not, the move is
accepted. Unfortunately, in the original code there is no direct way to resolve
an Entity object from a given lattice position. Thus, in order to verify that a
given position is unoccupied, the list of Entities must be scanned sequentially,
with each each Entity’s position compared to the position in question. If the
position is indeed unoccupied, this method requires iteration of the entire list
to confirm it as such. Because of this, the occupancy check is considered to
have linear complexity with respect to the particle count. Since this check is
performed while the event catalog is being constructed, which in itself is of
linear complexity with respect to the particle count because each Entity must
be checked against every Action, the construction of the Event catalog ends
up being of quadratic complexity with respect to the particle count. Since the
event catalog is reconstructed at each KMC time step, this quadratic complexity
significantly impacts the overall performance of the code.

This quadratic complexity problem is addressed in the new KMC code by
the addition of a bookkeeping data structure. As the code is written in C++,
access to data structures’ memory addresses (pointers) is permitted. With this
capability available, what is essentially a map from 3-dimensional positions to
Entity pointers is constructed. Since the code is Lattice Kinetic Monte Carlo,
particles can only exist on specific lattice sites. As such, the lattice positions
can be scaled in such a way as to make all the lattice coordinates non-negative
integers. This allows the position map to be created as a list of lists of lists of
Entity pointers. Since list access is constant time, this reduces the occupancy
check complexity from linear to constant time with respect to particle count,
which reduces the overall code complexity from quadratic to linear with respect
to particle count. This structure is initialized as the particles are added to
the Entity list at the beginning of the simulation, and with the constant time
access can be easily updated after each migration event. This results in a huge
performance gain compared to the original code, as simulations that would
take hours in the original code could finish in minutes in the new code. This
performance gain is shown explicitly in Section 5.1.
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4.3.2 Per-Event Migration Rates

A major limitation in the design of the original code was the lack of proper
per-event rates. In the original code, it was assumed that migration energies
were constant for a given Action. For example, a oxygen vacancy attempting
to the neighboring interstitial site in the +z direction will have the same mi-
gration energy regardless of the migrating vacancy’s local environment. Since
the migration energy associated with a given action is assumed never to change,
the migration rate is only calculated once while the system is being initialized,
and both the migration energy and the resulting migration rate for each action
are stored as properties of the Action. This limitation was a major problem
for this study, as the ability to change migration energies based on the local
environment is what this study is all about.

Since actions in the new code are allowed to have different energies based on
the local environment, the data structures and the main algorithm need to be
changed in the new code. The Event class is extended to hold a migration energy
and migration rate, in addition to the references to the Entity and Action it is
associated with. As the migration energy and migration rate are now associated
with the Events in the event catalog, they need to be calculated each time the
event catalog is populated. An additional step is added to the original code
algorithm after the event catalog is populated to iterative over the events in
the catalog and for each Event, determine the correct migration energy and
calculate the corresponding migration rate.

4.3.3 XML Input/Output

In order to facilitate the generalization both to allow arbitrary particle types
to be placed in the system and to allow arbitrarily complex local environments
and corresponding energies to be specified, the systems for reading and writing
data needs to be modified. In the original code, configuration entries were spec-
ified as key/value pairs (see Listing 4.1), while the action entries were specified
in a multicolumn format (see Listing 4.2). These formats are sufficient for the
simplified system the original code was designed for, but it is not sufficient for
the complex interactions that need to be specified for this study. Attempting
to use these simple tab-delimited formats for complex specifications would re-
sult in extremely complex input specifications and even more complex parsers
and generators to write them. As I/O specification becomes more complicated
it becomes very difficult to read/write input/output files without making mis-
takes. It also becomes more difficult to access these files programmatically,
which makes both generating series of input files and analyzing the resulting
output files more difficult.

This problem is solved by the introduction of XML as the method of data
transport. XML schemas can be written for arbitrary data transport, which
makes it ideal for customized data transport in custom codes such as this. The
XML protocol is also very well supported, with XML interfaces either built into
or readily available for almost every commonly used programming language. As
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such, it becomes almost trivial to read and write data from the program (e.g.
instead of reading the system temperature from the output file by iterating down
the lines of the file to the third line, then reading the fifth column of data or
whatever, the entire data file can be automatically loaded into a data structure
and the temperature can be obtained by some logical data structure accessors
like $data->{config}->{temperature}).

Customized XML schemas for the various input and output files were devel-
oped, so input can be generated easily from any programming language with an
XML module (almost every commonly used language). An additional input file
for Entity naming and sublattice maps we also developed so that arbitrary par-
ticle types can be specified and properly added to the system without any mod-
ification of the code (see Listing 4.3), Also, when combined with bi-directional
maps added to the code, this allows for logical particle names to be used in the
input and output files instead of their internal numerical representation (e.g.
the tetrahedral vacancy particle type can be represented by the logical name
tet_vacancy instead of its internal numerical identifier 4). The configuration
input file specifies all of the system configuration parameters like the original
code (see Listing 4.4). The actions input file specifies the information related to
each migration action (see Listing 4.5), and is extended in the next section to
support arbitrary local configuration dependent migration energies. Finally, the
output file contains the calculated diffusion coefficient of each of the particles
in the system, along with various runtime statistics (see Listing 4.6).

Listing 4.3: Generalized code sample entities input

<?xml version=” 1 .0 ” encoding=”utf−8”?>
<e n t i t i e s>

<en t i t y>
<name>sub lanthanum</name>
<s u b l a t t i c e>s u b s t i t u t i o n a l</ s u b l a t t i c e>

</ en t i t y>
<en t i t y>

<name>t e t vacancy</name>
<s u b l a t t i c e>t e t r ah ed r a l</ s u b l a t t i c e>

</ en t i t y>
</ e n t i t i e s>
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Listing 4.4: Generalized code sample configuration input

<?xml version=” 1 .0 ” encoding=”utf−8”?>
<c on f i gu r a t i on>

<boltzmann constant>8.61738 e−5</ boltzmann constant>
<dimensions>

<x>15</x>
<y>15</y>
<z>15</z>

</ dimensions>
< i n i t i a l p o p u l a t i o n s>

<populat ion>
<count>200</ count>
<en t i t y>sub lanthanum</ en t i t y>

</ populat ion>
<populat ion>

<count>100</ count>
<en t i t y>t e t vacancy</ en t i t y>

</ populat ion>
</ i n i t i a l p o p u l a t i o n s>
< l a t t i c e pa r ame t e r>5 .411 e−8</ l a t t i c e pa r ame t e r>
< l a t t i c e t y p e> f a c e c e n t e r e d cub i c</ l a t t i c e t y p e>
<s imu l a t i o n s t e p s>10000</ s imu l a t i on s t e p s>
<temperature>1073</ temperature>

</ c on f i g u r a t i on>
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Listing 4.5: Generalized code sample actions input (truncated to save space)

<?xml version=” 1 .0 ” encoding=”utf−8”?>
<a c t i on s>

<ac t i on>
<d i r e c t i o n>

<x>0</x>
<y>0</y>
<z>2</z>

</ d i r e c t i o n>
<energy>0 .7489</ energy>
<en t i t y>t e t vacancy</ en t i t y>
<f r equency>1 .0 e13</ f requency>
<s u b l a t t i c e>t e t r ah ed r a l</ s u b l a t t i c e>
<type>migrat ion</ type>

</ ac t i on>
<ac t i on>

<d i r e c t i o n>
<x>0</x>
<y>0</y>
<z>−2</z>

</ d i r e c t i o n>
<energy>0 .7489</ energy>
<en t i t y>t e t vacancy</ en t i t y>
<f r equency>1 .0 e13</ f requency>
<s u b l a t t i c e>t e t r ah ed r a l</ s u b l a t t i c e>
<type>migrat ion</ type>

</ ac t i on>
<ac t i on>

<d i r e c t i o n>
<x>2</x>
<y>0</y>
<z>0</z>

</ d i r e c t i o n>
<energy>0 .7489</ energy>
<en t i t y>t e t vacancy</ en t i t y>
<f r equency>1 .0 e13</ f requency>
<s u b l a t t i c e>t e t r ah ed r a l</ s u b l a t t i c e>
<type>migrat ion</ type>

</ ac t i on>
</ a c t i on s>
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Listing 4.6: Generalized code sample output

<?xml version=” 1 .0 ” encoding=”utf−8”?>
<r e s u l t s>

<c on f i gu r a t i on>
<temperature>1073</ temperature>
< l a t t i c e t y p e> f a c e c e n t e r e d cub i c</ l a t t i c e t y p e>
< l a t t i c e pa r ame t e r>5 .411 e−008</ l a t t i c e pa r ame t e r>
<dimensions>

<x>15</x>
<y>15</y>
<z>15</z>

</ dimensions>
</ c on f i g u r a t i on>
<e n t i t i e s>

<en t i t y>
<name>sub lanthanum</name>
< i n i t i a l p o p u l a t i o n>200</ i n i t i a l p o p u l a t i o n>
<d i f f u s i v i t y>0</ d i f f u s i v i t y>
<square d i sp lacement>0</ square d i sp lacement>
<rms disp lacement>0</ rms disp lacement>

</ en t i t y>
<en t i t y>

<name>t e t vacancy</name>
< i n i t i a l p o p u l a t i o n>100</ i n i t i a l p o p u l a t i o n>
<d i f f u s i v i t y>8 .821 e−007</ d i f f u s i v i t y>
<square d i sp lacement>1 .570 e−012</ square d i sp lacement>
<rms disp lacement>1 .253 e−007</ rms disp lacement>

</ en t i t y>
</ e n t i t i e s>
<t im e s e r i e s />
< r u n s t a t i s t i c s>

<run t ime>552</ run time>
<s imu l a t i o n s t ep s>10000</ s imu l a t i on s t e p s>
<s imu la t i on t ime>2.96782 e−009</ s imu la t i on t ime>
<ave rage t ime s t ep>2.96782 e−013</ ave rage t ime s t ep>
<max time step>3.69887 e−012</max time step>
<min t ime step>2 .8271 e−017</min t ime step>
<a c t i o n l i s t s i z e>6</ a c t i o n l i s t s i z e>
<arrangement count>756</ arrangement count>
<a v g e v e n t c a t a l o g s i z e>520</ a v g e v e n t c a t a l o g s i z e>
<max even t ca t a l og s i z e>594</max even t ca t a l og s i z e>
<min ev en t c a t a l o g s i z e>500</m in ev en t c a t a l o g s i z e>

</ r u n s t a t i s t i c s>
</ r e s u l t s>
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4.3.4 Arbitrary Local Environments

In order to support migration energies that depend on a local environment,
there needs to be a mechanism to check these local environments. Since this
involves looking for particles that may or may not occupy various local lattice
sites, this procedure will have the same lookup efficiency issues as the migration
site occupancy check. Fortunately, the implementation of the positional grid
map discussed in Section 4.3.1 makes this lookup relatively efficient. While it is
possible to hardcode specific neighbor sites and entity types in the code without
too much additional work, this requires the code be modified every time different
local configurations are to be simulated. Thus, a more general approach needed
to be determined.

Many different ideas were considered to implement this, but only one was
sufficiently general to allow an arbitrary number of arbitrary configurations to
be specified completely in the action input file without the need to modify or
rebuild the code. This method is described here.

To begin, in a given local configuration (referred to as an Arrangement),
each position to be considered is specified (referred to as a Restriction). A Re-
striction consists of a position/entity-type pair, where the position specifies the
3-dimensional position relative to the initial position of the migrating particle,
and the entity-type is the type of Entity that should be present in that posi-
tion. Each Arrangement contains an arbitrary length list of these Restrictions,
along with the migration energy that corresponds to this set of Restrictions. An
Arrangement can thus consider any arbitrary local configuration that is speci-
fied. The Action class is extended to contain an arbitrary length list of these
Arrangements. Each Action can thus consider any number of arbitrary local
configuration specified. For the local environment used in this study (Figure
3.1), there are 6 cation sites that influence the migration energy, so each Action
contains 64 Arrangements corresponding to the 64 different possible configura-
tions of the 6 cation sites, where each of these Arrangements contains 6 Restric-
tions that specify the positions and entity-types of the configuration, along with
the migration energy that correspond to that configuration. A sample Action
containing a local arrangement is shown in Listing 4.7 (note that since only
the defects are simulated, not the background CeO2 lattice, an “empty” cation
site corresponds to a Ce atom). Constructing such an action file can be quite
daunting if done manually, but since it is written in XML, it can be constructed
logically in a programming language data structure and then exported to XML
using the language’s XML interface.

After this information is loaded into the Action data structure, it can be used
during the migration rate calculation step discussed in Section 4.3.2. During this
step, rather than just taking the migration base migration energy specified in
the action file, the code first checks the associated Arrangements to see if any of
them apply. It does this by iterating over the list of Arrangements sequentially,
and using the energy associated with the first Arrangement that applies to the
event. It checks each Arrangement by iterating over the list of Restrictions for
the Arrangement and checking the positions and entity types specified by these

27



Restrictions. If any of the Restrictions do not match, the Arrangement does not
apply to the Event, and if all of the Restrictions match, the Arrangement does
apply to the Even. If after checking all of the Arrangements none of them are
found to match, the base migration energy (this can thought of as the “default”
energy) for the Action is used. Once the migration energy has been determined,
the migration rate is calculated in the normal way from Equation 4.1.
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Listing 4.7: Generalized code sample action with arrangement

<?xml version=” 1 .0 ” encoding=”utf−8”?>
<a c t i on s>

<ac t i on>
<arrangements>

<arrangement>
<energy>0 .5366</ energy>
< r e s t r i c t i o n s>

< r e s t r i c t i o n>
<d i r e c t i o n>

<x>−1</x>
<y>1</y>
<z>−1</z>

</ d i r e c t i o n>
<en t i t y>no en t i t y</ en t i t y>

</ r e s t r i c t i o n>
< r e s t r i c t i o n>

<d i r e c t i o n>
<x>1</x>
<y>−1</y>
<z>−1</z>

</ d i r e c t i o n>
<en t i t y>sub lanthanum</ en t i t y>

</ r e s t r i c t i o n>
< r e s t r i c t i o n>

<d i r e c t i o n>
<x>−1</x>
<y>−1</y>
<z>1</z>

</ d i r e c t i o n>
<en t i t y>no en t i t y</ en t i t y>

</ r e s t r i c t i o n>
</ r e s t r i c t i o n s>

</arrangement>
</arrangements>
<d i r e c t i o n>

<x>0</x>
<y>0</y>
<z>2</z>

</ d i r e c t i o n>
<energy>0 .7489</ energy>
<en t i t y>t e t vacancy</ en t i t y>
<f r equency>1 .0 e13</ f requency>
<s u b l a t t i c e>t e t r ah ed r a l</ s u b l a t t i c e>
<type>migrat ion</ type>

</ ac t i on>
</ a c t i on s>
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Chapter 5

Results and Discussion

5.1 Computational Complexity

As was discussed in Section 4.3.1, because of the way positions are stored in the
original code there is no direct way to resolve a lattice position to a particle,
which results in quadratic complexity with respect to the particle count. This
is solved in the generalized code by the introduction of a position-entity map,
which reduces position lookups to constant time, and overall code complexity to
linear time. To demonstrate this, the generalized code is used to run the same
simulation environment that the original code is capable of running. This is a
fluorite UO2 lattice with interstitial oxygen atoms added in various concentra-
tions to study hyperstoichiometric effects. The migration energy and attempt
frequency are taken to be the same as what was provided with the original code
(Em = 1.1 eV, �0 = 1 × 1013 Hz). The simulation system was taken to be a
15×15×15 unit cell cubic system with periodic boundary conditions. The run-
time results for these simulations are provided in a linear scale in Figure 5.1 to
show the complexity trends, and in a logarithmic scale in Figure 5.2 for a more
useful comparison of the actual time values. These results show the enormous
improvement in complexity and runtime, which is critical to the performance of
the local configuration-dependent simulations. Without this improvement this
improvement the more complex simulations would extraordinary long times to
complete.
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Figure 5.1: Comparison of computational complexity with respect to the particle
count (show here as a function of the stoichiometric parameter) shown on a linear
scale to demonstrate complexity trends. Here “Inefficient” refers to the original
code algorithm, while “Efficient” refers to the generalized code algorithm.

31



Figure 5.2: Comparison of computational complexity with respect to the particle
count (show here as a function of the stoichiometric parameter) shown on a
logarithmic scale for accurate comparison of runtime values. Here “Inefficient”
refers to the original code algorithm, while “Efficient” refers to the generalized
code algorithm.
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5.2 Code Verification

First, it is important to verify that the generalized code is able to reproduce
the results of the original code, to confirm that the core functionality of the
generalized code is consistent with that of the original code. To confirm this, the
diffusivity results from the computation complexity simulations are compared.
These simulations provided the oxygen interstitial diffusion coefficient Di from
Equation (4.2). The oxygen self-diffusivity is then calculated by:

DO = [O′′i ]Di (5.1)

where DO is the oxygen self-diffusivity, [O′′i ] is the oxygen interstitial mole
fraction, and Di is the oxygen interstitial diffusivity. The computed results from
the original code and from the generalized code are compared with each other,
and with experimentally measures values provided by Contamin [35] and Murch
[36]. The results are given in Figure 5.3. These results show excellent agreement
between the calculated results from the original code and generalized code, and
between the calculated results and the experimentally measured values.

Figure 5.3: Comparison of calculated and experimentally measured oxygen self-
diffusivities in hyperstoichoimetric UO2. Here “Inefficient” refers to the original
code algorithm, while “Efficient” refers to the generalized code algorithm.
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With the core functionality verified, it is also important to verify the most
important extension to the original code: the local configuration depedent en-
ergies. The code to read the complex XML input data and store it in the
Action data structures, as well as the code to scan for these configurations
during migration energy determination is quite extensive. It is important con-
firm that these configurations are being recognized correctly by the code as
it checks through them. To verify this, the code was modified to output the
configuration found as it scans through the local environment of each particle.
These counts were aggregated for several different non-stoichiometric values x
in LaxCe1−xO2−x/2. The distribution of these configuration changes according
to the energies, to confirm the expected initial random distributions, only the
configurations for the initial time step are considered. These results are given
in Figure 5.4. The configuration number in these figures corresponds to the row
number of the configuration at specified in Table 3.2, and can be thought of as
increasing with increasing number of neighbor lanthanum cations. These results
show that as expected, for low dopant concentrations the configurations found
are concentrated around the 0-1 neighbor lanthanum cation configurations, and
as the dopant concentration increases, the configuration distribution spreads
out to include the higher neighbor lanthanum cation configurations.
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Figure 5.4: Configuration distribution verification for initial configurations at
increasing non-stoichiometries. The configuration number corresponds to the
row number of the configuration at specified in Table 3.2.
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5.3 Potential Validation

To analyze the validity of the potentials described in Table 2.1, KMC simula-
tions are performed using the local configuration dependent migrations energies
calculated from these potentials. These simulations are performed on a fluo-
rite UO2 lattice with lanthanum added to the system in various concentrations
to study hypostoichiometric effects. The simulation system was taken to be a
15×15×15 unit cell cubic system with periodic boundary conditions at 800 ∘C.
Oxygen tetrahedral vacancies and lanthanum substitutional atoms are added
according to the vacancy compensation mechanism in Equation 2.4. The local
configuration depenent vacancy migration energies for each potential are taken
from Table 3.2. To be sure that the event catalog and migration energies are
properly sampled, it is important to select a sufficiently large number of sim-
ulations steps to run, especially for high dopant concentrations. In order to
ensure that a sufficiently large number of steps is used in the validation study,
the simulations for one of the potentials were run with increasing simulation
steps until the solutions converged. The results are shown in Figure 5.5, and
indicate that 500, 000 KMC steps is sufficient to get converged results for this
system. While this study was only performed for one potential (Gotte [22]), it
is assumed that the conclusion can be transfered to the other potentials since
the simulations for these potentials use the same particle concentrations and
configurational complexity.

With the sufficiently large number of KMC steps determined, the KMC sim-
ulations for varying dopant concentrations are performed using the migration
energies derived for each of the three potentials (Table 3.2). The same sim-
ulations are performed using a constant migration energy that corresponds to
the case of zero neighbor lanthanum cations (pure hypostoichiometric ceria) in
order to demonstrate the effect of the lanthanum interactions. The results of
these simulations are given in Figure 5.7 (Gotte [22]), Figure 5.8 (Minervini
[7]), and Figure 5.9 (Sayle [23]). Diffusivity results from all three potentials
clearly show the desired lanthanum trapping effect, so in this sense they are all
reasonable potentials. However, each potential shows peak oxygen diffusivity
at different dopant concentrations. To see which produces the most realistic
result, the peak diffusivities are compared to experimental results by Faber et.
al [37]. Faber et al. studied ionic conductivity in ceria doped with several dif-
ferent dopant species. From the ionic conductivity, they calculated the effective
activation energy for diffusion. The calculated values for lanthanum doped ce-
ria are shown in Figure 5.6. The overall effective activation energy essentially
determines how easy it is for ions to diffuse, so from this it is inferred that
the minimum overall activation energy should roughly correspond to the peak
oxygen diffusivity. The minimum activation energy as found by Faber occurs
at around 5% lanthanum concentration, while the peak diffusivities from Gotte,
Minervini, and Sayle occur around 12%, 20%, and 23% respectively. Based on
these results, it is concluded that out of the three, the Gotte potential yielded
the most realistic diffusion curve.
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Figure 5.5: KMC simulation steps comparison using migration energies derived
from the Gotte [22] potential.
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Figure 5.6: Effective activation energy as a function of non-stoichiometry in
La-doped ceria [37].
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Figure 5.7: KMC simulation results for migration energies derived from the
Gotte [22] potential.
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Figure 5.8: KMC simulation results for migration energies derived from the
Minervini [7] potential.
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Figure 5.9: KMC simulation results for migration energies derived from the
Sayle [23] potential.

41



Chapter 6

Conclusions and Future
Work

To conclude, a kinetic Monte Carlo code has been developed and has been used
in validation studies on several interatomic potentials. The following provides
a brief summary of the conclusions drawn from this study:

1. A generalized Kinetic Monte Carlo code has been developed to simulate
diffusion of defects whose migration energies can vary according to arbi-
trarily specified local atomic configurations.

2. The Molecular Dynamics code GULP has been used to calculate local con-
figuration dependent migration energies from three different interatomic
potentials for lanthanum doped ceria.

3. Kinetic Monte Carlo simulations have been carried out on oxygen vacancy
diffusion in lanthanum doped ceria.

4. The lanthanum trapping effect in lanthanum doped ceria has been con-
firmed both from Molecular Dynamics results and from Kinetic Monte
Carlo results.

5. Diffusion results from three different interatomic potentials have been com-
pared to each other and to experimental activation energy data.

There are also some places for improvement and extension in the KMC sim-
ulation and the generalized KMC code. The following provides a brief list of
possible future work:

∙ Neighbor tables could be added to each Entity that would contain the
atoms that that could be affected by a migration event. This would allow
the Event catalog to be selectively modified at the end of each time step
instead of being completely rebuilt.
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∙ Oxygen vacancies have a tendency to cluster and form voids. A similar
series of Molecular Dynamics calculations could be performed on vacancy-
vacancy interactions and these interactions could be added to the simula-
tion.

∙ Support for additional event types such as particle production (e.g. as
a result of radiation damage or fission events) or particle recombination
(e.g. Frenkel pair recombination) could be added.

∙ The use of memory pointers makes parallelization in non-shared memory
paradigms difficult. Alternatives that require more work and bookkeeping
could be considered in an effort to allow parallelization.
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