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ObjectiveObjective

 Write a MC liquid water simulation program Write a MC liquid water simulation program 
from scratch which yields observables that are from scratch which yields observables that are 
consistent with those found in the literature.consistent with those found in the literature.

 We chose to code in We chose to code in 
C++ since it is modular C++ since it is modular 
and objectand object--oriented.oriented.

 The first decision we The first decision we 
needed to make was needed to make was 
which water potential which water potential 
to use.to use.

The animated gif shows positions of 125 water molecules every 1000 steps in the 
last 200K iterations of a 5 million iteration process.
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PotentialsPotentials

 Many potentials exist for 2Many potentials exist for 2-- 33-- 44-- and 5and 5--site site 
models of water.models of water.

 We chose a 3We chose a 3--site NVT model to maintain site NVT model to maintain 
simplicity while keeping good agreement with simplicity while keeping good agreement with 
physical parameters.physical parameters.

 TIP3P potential:TIP3P potential:
 rrOHOH = 0.96 = 0.96 ÅÅ
 HOH angle = 104.52HOH angle = 104.52°°
 qqOO = = --2q2qHH = = --0.834, charges located directly on atoms0.834, charges located directly on atoms
 LJLJAA = 582x10= 582x1033 kcal kcal ÅÅ 1212/mol, LJ/mol, LJCC = 595 kcal = 595 kcal ÅÅ 66/mol/mol
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The TIP3P potential used by Jorgensen et al uses the NPT ensemble since it most 
closely resembles laboratory conditions. It also provides the opportunity to calculate 
some statistical averages that cannot be found with NVT. We decided on NVT since 
it was simpler to code and the differences in this project would not be significant.

The TIP3P potential consists of a Lennard-Jones potential for oxygen-oxygen 
interactions only, with a Coulombic interaction for all O and H atoms, which results 
in 1 O-O, 4 O-H, and 8 H-H interactions per pair of molecules.
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Code LayoutCode Layout

 HeadersHeaders
 Main.hMain.h
 MC.hMC.h

 SourceSource
 Main.cxxMain.cxx
 Coordinates.cxxCoordinates.cxx
 Energy.cxxEnergy.cxx
 GofR.cxxGofR.cxx
 MC.cxxMC.cxx
 MCMove.cxxMCMove.cxx
 RandGen.cxxRandGen.cxx

 Necessary inputs:Necessary inputs:
 Number of moleculesNumber of molecules
 TemperatureTemperature
 Potential (TIP3P)Potential (TIP3P)
 Initialization stepsInitialization steps
 MC stepsMC steps
 How often to sample Energy and How often to sample Energy and 

g(rg(r))

 Volume calculated Volume calculated 
automatically from densityautomatically from density

 We used standard Intel and We used standard Intel and 
Microsoft math libraries and Microsoft math libraries and 
compilers.compilers.

The volume of our simulation is constant, and is computed automatically by the 
program based on the number of molecules and the density of water at the 
simulation temperature.

Header files are used to store all of the global variables that define the environment 
and simulation space as well as the molecule positions and almost any information 
(cumulative energy, g(r) histogram, etc) that is retained from step to step.

Only local variables that are used within an operation and discarded are defined 
within the individual source files.

Standard math library random number generators were used, but if more 
sophisticated methods were desired, the RandGen.cxx could easily be updated with 
more robust subroutines without any intensive changes to the program as a whole.

Initialization was usually run for ~10K iterations, because the particles are initially 
distributed randomly in the box without checking for overlaps. Any such anomalies 
are assumed to be worked out of the system by the favorable energy change 
associated with breaking them up.
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AlgorithmAlgorithm

 Metropolis Monte Carlo algorithm:Metropolis Monte Carlo algorithm:
 Move random particle by a random distanceMove random particle by a random distance
 Calculate Calculate ∆∆EE
 Accept or reject move based on Accept or reject move based on --1/kT1/kT
 Update positionUpdate position

 Our maximum movement length is 0.15Our maximum movement length is 0.15ÅÅ to to 
achieve an acceptance ratio between 43% and achieve an acceptance ratio between 43% and 
64%, depending on the number of iterations.64%, depending on the number of iterations.

 Energy data is output every 1KEnergy data is output every 1K--10K iterations, 10K iterations, 
with with g(rg(r) data recorded about as often.) data recorded about as often.

The maximum 0.15A jump distance was taken from Jorgensen et al, who achieved 
~40% acceptance. For simulations under 100K iterations, our acceptance ratio was 
~43%, but the ratio increases to ~64% above 1 million iterations.
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OptimizationOptimization

 Defining H positions without trig functionsDefining H positions without trig functions
 Use linear algebra with properly generated random Use linear algebra with properly generated random 

numbers to position the H atoms based on Onumbers to position the H atoms based on O
 No lookup tables (trig functions) are usedNo lookup tables (trig functions) are used

 Periodic Boundary ConditionsPeriodic Boundary Conditions
 Setting up a 3x3x3 matrix of boxes that surround the Setting up a 3x3x3 matrix of boxes that surround the 

core box is a quick way to find the shortest distance core box is a quick way to find the shortest distance 
between to particles in PBC.between to particles in PBC.

 Much faster than subtracting Much faster than subtracting nint(distancenint(distance/box)*box /box)*box 
from the distancesfrom the distances

The H optimization occurs any time a particle is moved, and many times during the 
initialization of the positions.

The PBC optimization runs any time the distances between particles must be 
calculated, so it saves a lot of computing time when calculating the energy after 
every iteration.
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Energy TrendsEnergy Trends

 Simulations were run with 10K initialization Simulations were run with 10K initialization 
steps to ensure that the energy had settled.steps to ensure that the energy had settled.

Iterations (x10)

2-D Hydrogen Binding Energy
3-D Potential Energies

< Coulombic > = -0.918 +/- 0.015
< Lennard-Jones > = -1.53 +/- 0.12
< H binding > = -2.45 +/- 0.11

Iterations (x105)

3-D Potential Energy Averages:

< H binding > = -2.45 +/- 0.11

< Coulombic > = -0.918 +/- 0.015

< Lennard-Jones > = -1.53 +/- 0.12

According to Jorgensen, the LJ energy should be on the order of 1.2 kcal/mol, while 
the Coulombic energy is about -5.39kcal/mol. That equates to a total H bonding 
energy of -4.20kcal/mol, or about 3.5 bonds per molecule. Hydrogen bonds are 
defined by interaction energy of -2.25 kcal/mol or less.
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Radial Distribution FunctionRadial Distribution Function

 g(rg(r) does have a large initial peak, and a forbidden zone ) does have a large initial peak, and a forbidden zone 
near r = 0, but its dimensions do not agree with theorynear r = 0, but its dimensions do not agree with theory
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The scale of our g(r) curve is off, but the general shape is correct. Most likely, there 
is an incorrect factor in the normalization code that is skewing the size but not 
distorting the shape. This particular g(r) curve was the result of a 125 particle 
simulation after about 1000 iterations with binning in the g(r) histogram at 100 step 
intervals.

Another possible problem is the high LJ potential in our energy calculations, which 
might have a drastic effect on the close-range interactions of the molecules.
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22--D D MatlabMatlab SimulationsSimulations

 22--D simulations show that water molecules cluster together.D simulations show that water molecules cluster together.
 In this simulation, all molecules are moved after every step.In this simulation, all molecules are moved after every step.

In nature, water molecules cluster together with hydrogen bonding, which is the 
result of O-H interactions between neighboring molecules.

In this simulation, molecules began in a random distribution with random 
orientations, and all molecules are moved randomly at each iteration. They 
curiously bundle together by touching H-H after 10K steps.

This simulation was coded and performed by Jihan Kim.
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ConclusionsConclusions

 Our program is a fast and intuitive way to Our program is a fast and intuitive way to 
simulate water using Monte Carlo.simulate water using Monte Carlo.

 This code can easily handle a 3This code can easily handle a 3--site potential, site potential, 
and minor modifications would allow 4and minor modifications would allow 4--sites.sites.

 Our Our LennardLennard--Jones interactions are a little too Jones interactions are a little too 
strong, but the potentials behave as expected.strong, but the potentials behave as expected.

 The The g(rg(r) normalization should be examined to ) normalization should be examined to 
correct its scale.correct its scale.
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