Local Energy Calculation of the Slater-Jastrow wave function

Kenneth P. Esler and Nichols A. Romero

December 17, 1999

1 Slater-Jastrow wave function

This short paper summarizes the local energy calculation problem of the calculation of the Slater-Jastrow wave function. This wave function has number of desirable properties for many-body quantum Monte-Carlo calculations of electrons in the presence of ions.

The Slater-Jastrow wave function is a product of Slater determinants and the Jastrow correlation factor:

$$\Psi_T(\{\mathbf{r}_i\}) = \det(A^{\mathrm{up}}) \det(A_{\mathrm{down}}) \exp\left(\sum_{i < j} U_{ij}\right)$$
 (1)

Here, the $A^{\rm up}$ and $A^{\rm down}$ are defined as the Slater matrices of the single particle up and down orbitals, respectively. That is

$$A = \begin{bmatrix} \phi_1(\mathbf{r}_1) & \phi_1(\mathbf{r}_2) & \phi_1(\mathbf{r}_3) & \phi_1(\mathbf{r}_4) & \cdots \\ \phi_2(\mathbf{r}_1) & \phi_2(\mathbf{r}_2) & \phi_2(\mathbf{r}_3) & \phi_2(\mathbf{r}_4) & \cdots \\ \phi_3(\mathbf{r}_1) & \phi_3(\mathbf{r}_2) & \phi_3(\mathbf{r}_3) & \phi_3(\mathbf{r}_4) & \cdots \\ \phi_4(\mathbf{r}_1) & \phi_4(\mathbf{r}_2) & \phi_4(\mathbf{r}_3) & \phi_4(\mathbf{r}_4) & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$
(2)

Where ϕ_k are molecular orbitals centered at \mathbf{c}_k :

$$\phi_k(\mathbf{r}) = \exp\left(\frac{-(\mathbf{r} - \mathbf{c}_k)^2}{\omega_k^2 + \nu_k |\mathbf{r} - \mathbf{c}_k|}\right)$$
(3)

The Jastrow correlation factor U_{ij} terms are defined in the following manner:

$$U_{ij} = \frac{a_{ij}r_{ij}}{1 + b_{ij}r_{ij}},\tag{4}$$

where $r_{ij} \equiv |\mathbf{r}_i - \mathbf{r}_j|$ and

$$a_{ij} = \begin{cases} e^2/8D & \text{if } ij \text{ are like spins} \\ e^2/4D & \text{if } ij \text{ are unlike spins} \\ e^2/2D & \text{if } ij \text{ are electron-nuclear pairs} \end{cases}$$
 (5)

This trial wave function (1) has a number of desirable properties:

- 1. The corerct cusp conditions for both like and unlike electron spins.
- 2. The coorect cusp behavior as the electron-nuclear separation becomes small.
- 3. The variational parameters in (1) have a simple physical interpretation at large separations.
 - (a) β can be related to the polarizability of a molecule
 - (b) ν^* the maximum value of ν is equal to $1/\sqrt{2I}$ where I is the first ionization potential.

2 Local Energy

We wish to compute the local energy of the wave function, defined by

$$E_{\rm lo\,cal} \equiv \frac{\hat{H}\Psi_T}{\Psi_T},\tag{6}$$

where

$$\hat{H} \equiv \frac{\hbar^2}{2m} \nabla^2 + V \tag{7}$$

The calculation of the potential energy V is straightforward. Therefore, we will focus here the application of the Laplacian operator to the Jastrow wave function. Given the form of the trial wave function, it will prove convenient to define

$$\mathcal{L}_{T} = \ln(\Psi_{T})$$

$$= \ln(\det(A^{\text{up}})) + \ln(\det(A_{\text{down}})) + \sum_{i < j} U_{ij}$$
(8)

We now attempt to calculation the action of ∇^2 on Ψ_T in terms of \mathcal{L}_T .

$$\nabla^{2}\Psi_{T}(\mathbf{R}) = \nabla^{2} \exp(\mathcal{L}_{T}(\mathbf{R}))$$

$$= \nabla \cdot \nabla(\exp(\mathcal{L}_{T}(\mathbf{R})))$$

$$= \nabla \cdot \left[\exp(\mathcal{L}_{T}(\mathbf{R}))\nabla \mathcal{L}_{T}(\mathbf{R})\right]$$

$$= \nabla^{2}\mathcal{L}_{T}(\mathbf{R}) \exp(\mathcal{L}_{T}(\mathbf{R})) + (\nabla \mathcal{L}_{T}(\mathbf{R}))\nabla \exp(\mathcal{L}_{T}(\mathbf{R}))$$

$$= \left[\nabla^{2}\mathcal{L}_{T}(\mathbf{R}) + (\nabla \mathcal{L}_{T}(\mathbf{R}))^{2}\right] \psi_{T}(\mathbf{R})$$
(9)

This leaves a particularly simple form for the local energy.

$$E_{\text{local}}(\mathbf{R}) = \frac{-\hbar^2}{2m} \left[\nabla^2 \mathcal{L}_T(\mathbf{R}) + (\nabla \mathcal{L}_T(\mathbf{R}))^2 \right] + V(\mathbf{R})$$
 (10)

Now, we are left with the task of computing $\nabla \mathcal{L}_T$ and $\nabla^2 \mathcal{L}_T$.

The gradient and Laplacian are linear operators, using (8), we can find action of these operators on each of the terms in the sum.

3 Jastro correlation factor

In this section we explicitly compute the gradient and Laplacian of the the corellation factor. We begin by calculating the gradient terms. Note that \mathbf{R} is a 3N dimensional vector, so that the gradient with respect to \mathbf{R} will have 3N components. For clarity, the 3N dimensional vector will be represented by N 3-dimensional vectors, $\{\mathbf{r}_i\}$. The i^{th} component of the gradient is simply

$$\nabla_i = \frac{\partial}{\partial x_i} \hat{x}_i + \frac{\partial}{\partial y_i} \hat{y}_i + \frac{\partial}{\partial z_i} \hat{z}_i$$
 (11)

We will explicity calculate the x_i component and symmetry considerations will give us the remainder. We begin by expanding the notation in our expression for U_{ij} .

$$U_{ij}(\mathbf{R}) = \sum_{i < j} \frac{a_{ij} \left[(x_i - x_j)^2 + (y_i - y_j)^2 + (z_i - z_j)^2 \right]^{\frac{1}{2}}}{1 + b_{ij} \left[(x_i - x_j)^2 + (y_i - y_j)^2 + (z_i - z_j)^2 \right]^{\frac{1}{2}}}$$
(12)

Since the summation is given for i < j, to calculate the i^{th} component, we will need to sum over the remaining j's.

$$(\nabla_{i})_{x} \sum_{i < j} U_{ij} = \sum_{i < j} \partial_{x_{i}} \left[\frac{a_{ij} \left[(x_{i} - x_{j})^{2} + (y_{i} - y_{j})^{2} + (z_{i} - z_{j})^{2} \right]^{\frac{1}{2}}}{1 + b_{ij} \left[(x_{i} - x_{j})^{2} + (y_{i} - y_{j})^{2} + (z_{i} - z_{j})^{2} \right]^{\frac{1}{2}}} \right]$$

$$= \sum_{i < j} \left[\frac{a_{ij} r_{ij}^{-1} (x_{i} - x_{j})}{1 + b_{ij} r_{ij}} - \frac{a_{ij} b_{ij} (x_{i} - x_{j})}{(1 + b_{ij} r_{ij})^{2}} \right]$$

$$= \sum_{i < j} \left[\frac{a_{ij}}{1 + b_{ij} r_{ij}} \left(r_{ij}^{-1} - \frac{b_{ij}}{1 + b_{ij} r_{ij}} \right) (x_{i} - x_{j}) \right]$$

$$= \sum_{i < j} \left[\frac{a_{ij}}{1 + b_{ij} r_{ij}} \left(\frac{r_{ij}^{-1} + b_{ij} - b_{ij}}{1 + b_{ij} r_{ij}} \right) (x_{i} - x_{j}) \right]$$

$$= \sum_{i < j} \left[\frac{a_{ij}}{r_{ij} (1 + b_{ij} r_{ij})^{2}} (x_{i} - x_{j}) \right]$$

$$(13)$$

With the form for the x component, we can generalize the calculation to the $i^{\rm th}$ component of the gradient.

$$\nabla_{i} \sum_{i < j} U_{ij} = \sum_{i < j} \frac{a_{ij}}{r_{ij} (1 + b_{ij} r_{ij})^{2}} (\mathbf{r}_{i} - \mathbf{r}_{j})$$
(14)

For each gradient term $\nabla_{\mathbf{r}_i}$ we need to to sum over all $j \neq i$. Now we move on to the Laplacian. We begin by expanding out (13).

$$(\nabla_{i})_{x} \sum_{i < j} U_{ij} = \sum_{i < j} \frac{a_{ij}(x_{i} - x_{j})}{\left[(x_{i} - x_{j})^{2} + y_{ij}^{2} + z_{ij}^{2}\right]^{\frac{1}{2}} \left\{1 + b_{ij}\left[(x_{i} - x_{j})^{2} + y_{ij}^{2} + z_{ij}^{2}\right]^{\frac{1}{2}}\right\}^{2}}$$

$$(15)$$

This calculation is quite involved, so we begin by taking the derivative of the denominator.

$$\partial_{x_i} \text{ denom} = r_{ij}^{-1} (1 + b_{ij} r_{ij})^2 (x_i - x_j) + 2b_{ij} (1 + b_{ij} r_{ij}) (x_i - x_j)$$

$$= (1 + b_{ij}) (r_{ij}^{-1} + 3b_{ij}) (x_i - x_j)$$
(16)

With this derivative, we can compute the full second derivative.

$$\partial_{x_{i}}^{2} U_{ij} = \frac{a_{ij}}{r_{ij}(1 + b_{ij}r_{ij})^{2}} - \frac{(1 + b_{ij}r_{ij})(r_{ij}^{-1} + 3b_{ij})(x_{i} - x_{j})^{2}a_{ij}}{r_{ij}^{2}(1 + b_{ij}r_{ij})^{4}}$$

$$= \frac{a_{ij}}{r_{ij}(1 + b_{ij}r_{ij})^{2}} \left[1 - \frac{(r_{ij}^{-1} + 3b_{ij})(x_{i} - x_{j})^{2}}{r_{ij}(1 + b_{ij}r_{ij})} \right]$$
(17)

Now, we may sum over components to generate the Laplacian with respect to \mathbf{r}_i . This summation changes the 1 in brackets to a 3 and the $(x_i - x_j)^2$ to r_{ij}^2 .

$$\nabla_{i}^{2}U_{ij} = \frac{a_{ij}}{r_{ij}(1+b_{ij}r_{ij})^{2}} \left[3 - \frac{(r_{ij}^{-1}+3b_{ij})r_{ij}^{2}}{r_{ij}(1+b_{ij}r_{ij})} \right]
= \frac{a_{ij}}{r_{ij}(1+b_{ij}r_{ij})^{2}} \left[\frac{3+3b_{ij}r_{ij}-1-3b_{ij}r_{ij}}{1+b_{ij}r_{ij}} \right]
= \frac{2a_{ij}}{r_{ij}(1+b_{ij}r_{ij})^{3}}$$
(18)

We remember that we must sum over all $i \neq j$ to calculate the full Laplacian.

4 Slater determinants

In this section, we explicity compute the gradient and Laplacian of the determinant of the trial wave function. In particular, we seek

$$\nabla[\ln \det(A)],\tag{19}$$

where A is either the up or down matrix. To simplify the analysis, we will initially work again in terms of components. Let ∂_i represent the derivative with respect to a single component of the 3N dimensional \mathbf{R} . Trivially, then,

$$\partial_i \ln[\det(A)] = \frac{1}{\det A} \partial_i \det(A)$$
 (20)

At first glance, taking the derivative of a determinant appears a daunting task. Considerable simplification is possible with the following simple relation, which we state without proof:

$$\partial_i \det(A) = \det(A) \operatorname{Tr} [A^{-1} \partial_i A]$$
 (21)

Then

$$\partial_i \ln[\det(A)] = \operatorname{Tr}[A^{-1}\partial_i A]$$
 (22)

Given this form, we are left with the calculation of the the elements of $\partial_i A$. The elements of A are just

$$A_{kl} = \phi_k(\mathbf{r}_l) \tag{23}$$

It is quite easy to see that the elements of the derivative matrix will be zero unless $i \in x_l, y_l, z_l$. Then the derivative matrix will have a single non-zero column. By taking advantage of symmetry, we can calculate the x, y, and z components simultaneously by directly calculating $\nabla_l \phi_k(\mathbf{r}_l)$. If we make the substitution,

$$\tilde{\mathbf{r}} \equiv \mathbf{r}_l - \mathbf{c}_k \tag{24}$$

then $\phi_k(\tilde{\mathbf{r}})$ will be radially symmetric in $\tilde{\mathbf{r}}$. Since these vector operators are translationally invariant,

$$\nabla_{\tilde{\mathbf{r}}} = \nabla_{r_l}.\tag{25}$$

If we work in spherical coordinates, $\phi_k(\tilde{r}, \tilde{\theta}, \tilde{\phi})$ will be independent of $\tilde{\theta}$ and $\tilde{\phi}$. We can then express the gradient as

$$\nabla_{\tilde{\mathbf{r}}}\phi_k(\tilde{\mathbf{r}}) = \partial_{\tilde{r}}\phi_k(\tilde{r})\hat{\tilde{\mathbf{r}}},\tag{26}$$

where $\hat{\mathbf{r}}$ represent the unit vector in the direction of $\tilde{\mathbf{r}}$. Written in terms of $\tilde{\mathbf{r}}$, the orbitals take the form,

$$\phi_k(\tilde{\mathbf{r}}) = \exp\left(\frac{-\tilde{r}^2}{\omega_k^2 + \nu_k \tilde{r}}\right) \tag{27}$$

The derivative takes the form

$$\partial_{\tilde{r}}\phi_{k}(\tilde{r}) = \phi_{k}(\tilde{r})\partial_{\tilde{r}}\left[\frac{-\tilde{r}^{2}}{\omega_{k}^{2} + \nu_{k}\tilde{r}}\right]$$

$$= \phi_{k}(\tilde{r})\left[\frac{-2\tilde{r}}{\omega_{k}^{2} + \nu_{k}\tilde{r}} + \frac{\nu_{k}\tilde{r}^{2}}{(\omega_{k}^{2} + \nu_{k}\tilde{r})^{2}}\right]$$

$$= \phi_{k}(\tilde{r})\left[\frac{-2\tilde{r}(\omega^{2} + \nu_{k}\tilde{r}) + \nu_{k}\tilde{r}^{2}}{(\omega_{k}^{2} + \nu_{k})^{2}}\right]$$

$$= \phi_{k}(\tilde{r})\left[\frac{-\tilde{r}(2\omega_{k}^{2} + \nu_{k}\tilde{r})}{(\omega_{k}^{2} + \nu_{k}\tilde{r})^{2}}\right]$$
(28)

and furthermore,

$$\nabla_{\tilde{\mathbf{r}}}\phi_{k}(\tilde{\mathbf{r}}) = \phi_{k}(\tilde{r}) \left[\frac{-\tilde{r}(2\omega_{k}^{2} + \nu_{k}\tilde{r})}{(\omega_{k}^{2} + \nu_{k}\tilde{r})^{2}} \right] \hat{\tilde{\mathbf{r}}}$$

$$= \phi_{k}(\tilde{r}) \left[\frac{-\tilde{r}(2\omega_{k}^{2} + \nu_{k}\tilde{r})}{(\omega_{k}^{2} + \nu_{k}\tilde{r})^{2}} \right] \left(\frac{\mathbf{r} - \mathbf{c}}{\tilde{r}} \right)$$

$$= \phi_{k}(\tilde{r}) \left[\frac{-(2\omega_{k}^{2} + \nu_{k}\tilde{r})}{(\omega_{k}^{2} + \nu_{k}\tilde{r})^{2}} \right] (\mathbf{r} - \mathbf{c}). \tag{29}$$

The total Laplacian will be a sum of the Laplacian's with respect to each electronic coordinate, \mathbf{r}_i . Let *i* represent a particular component of the 3N dimensional vector, \mathbf{R} , eg. the *x* component of \mathbf{r}_4 . Then we have that

$$\partial_{i} \ln[\det(A)] = \operatorname{Tr} [A^{-1} \partial_{i} A]
\partial_{i}^{2} \ln[\det(A)] = \partial_{i} \operatorname{Tr} [A^{-1} \partial_{i} A]
= \operatorname{Tr} [A^{-1} \partial_{i}^{2} A] + \operatorname{Tr} [(\partial_{i} A^{-1})(\partial_{i} A)]$$
(30)

where $\partial_i^2 A$ actually denotes the Laplacian of the components of the matrix A. For the latter term, we utilize the fundamental property of inverses,

$$A^{-1}A = 1$$

$$(\partial_{i}A^{-1})A + A^{-1}\partial_{i}A = 0$$

$$\partial_{i}A^{-1} = -A^{-1}(\partial_{i}A)A^{-1}$$
(31)

Using this new relation

$$\partial_i^2 \ln[\det(A)] = \operatorname{Tr} \left[A^{-1} \partial_i^2 A \right] - \operatorname{Tr} \left[A^{-1} (\partial_i A) A^{-1} (\partial_i A) \right]$$
$$= \operatorname{Tr} \left[A^{-1} \partial_i^2 A \right] - \operatorname{Tr} \left[(A^{-1} (\partial_i A))^2 \right]$$
(32)

Now, to calculate the Laplacian with respect to \mathbf{r}_m , we sum over the three components, j, of the \mathbf{r}_m .

$$\nabla_{\mathbf{r}_{m}}^{2} \ln[\det(A)] = \operatorname{Tr}\left[A^{-1} \nabla_{\mathbf{r}_{m}}^{2} A\right] - \sum_{j=\{x,y,z\}} \operatorname{Tr}\left[\left(A^{-1} (\partial_{\mathbf{r}_{m}^{j}} A)\right)^{2}\right], \tag{33}$$

where \mathbf{r}_m^j refers to the j^{th} component of \mathbf{r}_m .

We already have the first derivative of A, which we found in the gradient part of the calculation. Next we calculate the Laplacian of the components of A. Specifically, we seek $\nabla^2_{\mathbf{r}_m} A_{kl}$, where $A_{kl} = \phi_k(\mathbf{r}l)$. We have that

$$\nabla_{\mathbf{r}_m}^2 A_{kl} = \delta_{lm} \nabla_{\mathbf{r}_l}^2 \phi_k(\mathbf{r}_l) \tag{34}$$

What remains is the Laplacian of the molecular orbitals, ϕ_k , with respect to \mathbf{r}_l . If we make the definition, $\mathbf{r}_{kl} \equiv \mathbf{r}_l - \mathbf{c}_k$, we recognize that $\phi_k(\mathbf{r}_{kl})$ will spherically symmetric. Differential operators are invariant under translations, so we simplify the calculation our calculation by exploiting this translational invariance

$$\nabla_{\mathbf{r}_{m}}^{2} A_{kl} = \frac{1}{r_{kl}^{2}} \partial_{r_{kl}} r_{kl}^{2} \partial_{r_{kl}} \phi_{k}(r_{kl})$$

$$= \frac{2}{r_{kl}} \partial_{r_{kl}} \phi_{k}(r_{kl}) + \partial_{r_{kl}}^{2} \phi(r_{kl})$$
(35)

The first derivative of the molecular orbitals were computed earlier in this

paper, so we finally turn to computing the second derivative of the ϕ_k 's.

$$\partial_{\tilde{r}}^{2}\phi_{k}(\tilde{r}) = \partial_{\tilde{r}}\phi_{k}(\tilde{r}) \left[\frac{-\tilde{r}(2\omega_{k}^{2} + \nu_{k}\tilde{r})}{(\omega_{k}^{2} + \nu_{k}\tilde{r})^{2}} \right]$$

$$= \left[\frac{-\tilde{r}(2\omega_{k}^{2} + \nu_{k}\tilde{r})}{(\omega_{k}^{2} + \nu_{k}\tilde{r})^{2}} \right] \partial_{\tilde{r}}\phi_{k}(\tilde{r}) + \phi_{k}(\tilde{r})\partial_{\tilde{r}} \left[\frac{-\tilde{r}(2\omega_{k}^{2} + \nu_{k}\tilde{r})}{(\omega_{k}^{2} + \nu_{k}\tilde{r})^{2}} \right]$$

$$= \phi_{k}(\tilde{r}) \frac{\left[\tilde{r}(2\omega_{k}^{2} + \nu_{k}\tilde{r}) \right]^{2}}{(\omega_{k}^{2} + \nu_{k}\tilde{r})^{4}}$$

$$-2\phi_{k}(\tilde{r}) \left[\frac{(\omega_{k}^{2} + \nu_{k}\tilde{r})^{3} - \tilde{r}\nu_{k}(\omega_{k}^{2} + \nu_{k}\tilde{r})(2\omega_{k}^{2} + \nu_{k}\tilde{r})}{(\omega_{k}^{2} + \nu_{k}\tilde{r})^{4}} \right]$$
(36)