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1 Slater-Jastrow wave function

This short paper summarizes the local energy calculation problem of the calcu-
lation of the Slater-Jastrow wave function. This wave function has number of
desirable properties for many-body quantum Monte-Carlo calculations of elec-
trons in the presence of ions.

The Slater-Jastrow wave function is a product of Slater determinants and
the Jastrow correlation factor:

Tr({r;}) = det(4") det (Adown) exp (Z U”) v

Here, the A"P and A9°"" are defined as the Slater matrices of the single particle
up and down orbitals, respectively. That is

p1(r1) o1(r2) i(rs) ¢i(re) --
¢2(r1)  P2(r2) ¢a(rs) ¢a2(rs) -

A= #3(r1) ¢3(r2) 3(rs) ¢sz(rs) - (2)
¢a(r1)  ba(r2) alrs) Ga(ra) -

Where ¢ are molecular orbitals centered at cy:
—(r—cp)? )
r)=exp| 5——7—"— 3
P (x) p(w2+Vk|1'—Ck| ®)
The Jastrow correlation factor U;; terms are defined in the following manner:
Qi;Tij
Ujj = ——— 4
k 1 + bi]‘T‘,’j ’ ( )
where 7;; = |r; — r;| and

e?/8D if ij are like spins
aij =< €*/4D if ij are unlike spins (5)
e?/2D if ij are electron-nuclear pairs



This trial wave function (1) has a number of desirable properties:
1. The corerct cusp conditions for both like and unlike electron spins.

2. The coorect cusp behavior as the electron-nuclear separation becomes s-
mall.

3. The variational parameters in (1) have a simple physical interpretation at
large separations.

(a) B can be related to the polarizability of a molecule

(b) v* the maximum value of v is equal to 1/v/2I where I is the first
ionization potential.

2 Local Energy

We wish to compute the local energy of the wave function, defined by

HU
Eigcal = 1IITT, (6)
where
R n?_,
H=—
2mV +V (7

The calculation of the potential energy V is straightforward. Therefore, we
will focus here the application of the Laplacian operator to the Jastrow wave
function. Given the form of the trial wave function, it will prove convenient to
define
Lr = In(Trp)
= In(det(A")) + In(det(Agown)) + Y _ Uij (8)
i<j
We now attempt to calculation the action of V2 on ¥ in terms of Lr.

VO¥r(R) = V’exp(Lr(R))
V- V(exp(L7(R)))
= V- [exp(Lr(R))VLT(R)]
V2L (R) exp(Lr(R)) + (VL7 (R))V exp(L7(R))

[V2Lr(R) + (VLT (R))?] ¥r(R) )
This leaves a particularly simple form for the local energy.
—_p2
Boca(R) = 5 [VLr(R) + (VL2 (R)] +V(R) (10

Now, we are left with the task of computing VL7 and V2L7.
The gradient and Laplacian are linear operators, using (8), we can find action
of these operators on each of the terms in the sum.



3 Jastro correlation factor

In this section we explicity compute the gradient and Laplacian of the the
corellation factor. We begin by calculating the gradient terms. Note that R is
a 3N dimensional vector, so that the gradient with respect to R will have 3N
components. For clarity, the 3N dimensional vector will be represented by N
3-dimensional vectors, {r;}. The i*® component of the gradient is simply
0 0 0
Vi=—%i++—0i+ 5% 11

We will explicity calculate the z; component and symmetry considerations will
give us the remainder. We begin by expanding the notation in our expression
for Uij.

M=

> aij [(zi — 25)* + (yi — y3)* + (2 — 2))°]

Uy(R) =
1R iy LA+bij [(mi —2)% + (yi —y5)? + (20 — 25)?]

(12)

S

Since the summation is given for i < j, to calculate the i*" component, we will
need to sum over the remaining j’s.

V.Y Uy = Yo, | [ — 2,02 + (s — ;) + (21 — 2,)?]

M=

i< i<j L+ bij (@i — 25)% + (yi — y5)* + (21 — 2;)°]
> [ aijriy' (@i — 75) _ aybis (@i — ;)
ol Ltbiry (1 +bijrij)°
_ [ ai ( 1 bij ) ]
= — - — ) (z; — xy)
;j [1+byri; U7 14byr) "
i 1
i< _1 + bijrij 1+ bijrs; J
_ [ aij ( ]
= Y (g ;) (13)
; Lrij (L4 bigrig)? "

With the form for the 2 component, we can generalize the calculation to the 48
component of the gradient.

VY U= M (r; 1)) (14)

Y — i (14 bijrij)?
i<y i<y i ( iiTij)

For each gradient term V., we need to to sum over all j # i.
Now we move on to the Laplacian. We begin by expanding out (13).

(Vi)z Z Uij = Z aij (@i — 2;)

i<j i<i [(mi — ;)% + y% + 23] {1 + bil(wi — 5)% + 93 + 22]%

[V

—~

15)



This calculation is quite involved, so we begin by taking the derivative of the
denominator.

8“ denom = ’I‘z-gl (1 + b,’sz‘j)Q(.’L’i - :L']-) + 2[)1](1 + bijr,-j)(m,- — .’L’j)
= (L+bi) (" +3big) (@i — ) (16)

With this derivative, we can compute the full second derivative.

R2U. — aij (X byry) (g + 3bij) (zi — ;)
e rij (14 bijri;)? rii(L+ bijri;)*
_ aij (gt 4 3by) (@i — w)? a7)
Tij(l + bijn'j)2 T'z'j(l + b,-jrij)

Now, we may sum over components to generate the Laplacian with respect to
r;. This summation changes the 1 in brackets to a 3 and the (x; — ;) to r};.

1 9
VQU” A _ (rz’j +3bij)rij
! Tz'j(l + bz’jTij)Q T,’j(l + b,’jrij)
_ aij [3 + 3bz'j7‘,'j —-1- 3bz’j7'ij:|
rij (1 + bijri;)? 1+ byjrij

2011']'
— 18
rij(1+ bijri;)? (18)

We remember that we must sum over all i # j to calculate the full Laplacian.

4 Slater determinants

In this section, we explicity compute the gradient and Laplacian of the deter-
minant of the trial wave function. In particular, we seek

V[ln det(A4)], (19)

where A is either the up or down matrix. To simplify the analysis, we will
initially work again in terms of components. Let J; represent the derivative
with respect to a single component of the 3N dimensional R. Trivially, then,

1

At first glance, taking the derivative of a determinant appears a daunting task.
Considerable simplification is possible with the following simple relation, which
we state without proof:

8; det(A) = det(A) Tr[A~19;A] (21)



Then
O;In[det(A)] = Tr [A*18,-A] (22)

Given this form, we are left with the calculation of the the elements of 9;A. The
elements of A are just

Apr = ¢ (rg) (23)

It is quite easy to see that the elements of the derivative matrix will be zero
unless ¢ € zj,y;,2. Then the derivative matrix will have a single non-zero
column. By taking advantage of symmetry, we can calculate the z, y, and 2
components simultaneously by directly calculating V;¢x(r;). If we make the
substitution,

r=r;—cg (24)

then ¢ (F) will be radially symmetric in #. Since these vector operators are
translationally invariant,

Vi=V,. (25)

If we work in spherical coordinates, ¢y (7, 6, ¢~S) will be independent of  and ¢~5
We can then express the gradient as

Vidr (F) = 0r gy ()T, (26)

where T represent the unit vector in the direction of ¥. Written in terms of F,
the orbitals take the form,

o) = e () (27)

2 ~
wy + VgT

The derivative takes the form

Frtn(®) = BulP); [‘—Tz]

wi + v

[ —oF V2
= (") \w? + 7 (W2 + I/kf)2]

F om(, 2 = =2
- oo [ o
_ =7 (2w? + vF) ]
= ¢k(T) _(wl%-::—ljkf‘)z (28)

and furthermore,
a0 2 -
Vion®) = ou(F) % ;

_ [—Fw + )] (r—c
= () | (w? -ﬁl/m’)? ( 7 )
B . [—(2w? + v;7)
= ¢x(F) W] (r—c). (29)



The total Laplacian will be a sum of the Laplacian’s with respect to each
electronic coordinate, r;. Let i represent a particular component of the 3NN
dimensional vector, R, eg. the  component of ry. Then we have that

O;ln[det(4)] = Tr[A™'0;A]
07 In[det(A)] = 0; Tr[A10;4]
= Tr[AT'07A] + Tr[(8;A71)(8;A4)] (30)

where 07 A actually denotes the Laplacian of the components of the matrix A.
For the latter term, we utilize the fundamental property of inverses,

A4 = 1
(6¢A71)A+A716i14 = 0
9;A™Y = —AT1(H;A)A7 (31)
Using this new relation
O?In[det(4)] = Tr[A10?4)]— Tr[A 1 (8;A)A71(5;4)]
Tr[A7107 A] - Tr[(A™'(8:4))”] (32)

Now, to calculate the Laplacian with respect to r,,, we sum over the three
components, j, of the r,,.

V; Infdet(A)] = Tr[A7'VE A= > Tr[(A7'(0,5,4))°, (33)

j:{wyyaz}

where 1/, refers to the j®* component of r,,.

We already have the first derivative of A, which we found in the gradient
part of the calculation. Next we calculate the Laplacian of the compoents of A.
Specifically, we seek me Ap, where Ay = ¢ (rl). We have that

Vi Ak = 0m V2 b1 (x) (34)

What remains is the Laplacian of the molecular orbitals, ¢, with respect to
r;. If we make the definition, ry; = r; — ¢, we recognize that ¢ (rg) will
spherically symmetric. Differential operators are invariant under translations,
so we simplify the calculation our calculation by exploiting this translational
invariance

1
Vi A = TTaTklrzla”‘kl¢k(Tkl)
kl

= o) + 8, (i) (35)
Tkl

The first derivative of the molecular orbitals were computed earlier in this



paper, so we finally turn to computing the second derivative of the ¢y’s.

82 60(7) —F(2w? + I/kf)]

6?¢k(i:) |: (wI% +ka)2

[M] Or i (F) + 61 (%) [

(Wi + v )2

—7~'(2cul,2c + Vi)
(Wi + vif)?
[F(2w? + 1))
(w? + )t

—2¢(F) [

= ¢(F)

(W2 + viF)? — Frp (W2 + viF) (2w3 + Vi)
(wi + vyF)*

| o



