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Random Number Generation (RNG) 
read “Numerical Recipes” on random numbers and  

the chi-squared test. 

Today we discuss how to generate and test random numbers. 
 
What is a random number? 

–  A single number is not random. Only an infinite 
sequence can be described as random. 

–  Random means the absence of order. (Negative property).  
–  Can an intelligent gambler make money by betting on 

the next numbers that will turn up? 
–  All subsequences are equally distributed. This is the 

property that MC uses to do integrals and that you will 
test for in homework. 

 

“Anyone who considers arithmetical methods of random digits is, of course, in 
a state of sin.”   John von Neumann (1951) 

 
“Random numbers should not be chosen at random.” Knuth (1986) 

9/29/2020  Atomic Scale Simulation 



2 

Random numbers on a computer 

•  Truly Random - the result of a physical process such as 
timing clocks, circuit noise, Geiger counts, bad memory 
–  Too slow (we need 1010/sec) and expensive 
–  Low quality 
–  Not reproducible.  But new INTEL chip does this for security 

•  Pseudo-random. prng (pseudo means fake) 
–  Deterministic sequence with a repeat period but with the 

appearance of randomness (if you don’t know the 
algorithm). 

•  Quasi-random (quasi means almost random) 
–  “half way” between random and a uniform grid. 
–  Meant to fill space with max. distance between space to fill 
“holes” sequentially (e.g., [0,100] as 0,1,2,3,…,100). 

If doing a low-D integral, QRNG builds in correlation so the sequence will be 
more uniform than PRNG and converge to mean value quicker than N-1/2. 
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Intel’s RNG: Ivy Bridge 
•  Article describing it:   3 Gbits/sec 
•  http://spectrum.ieee.org/computing/hardware/behind-intels-

new-randomnumber-generator/0 
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Desired Properties of RNG on a computer 

•  Deterministic: easy to debug (repeatable simulations). 
 
•  Long Periods: cycle length is long. 
 
•  Uniformity:  RN generated in space evenly. 

–  Go through complete cycle, all integers occur once! 
–  TEST:  N occurrences of x. The no. in (a,b) is equal to  

N(b-a) ± [N(b-a)]-1/2 

 

•  Uncorrelated Sequences:   
<f1(xi+1)…fk(xi+k)>= <f1(xi+1)>…<fk(xi+k)> 
Monte Carlo can be very sensitive to such 

correlations, especially for large k. 
 

•  Efficiency: Needs to be fast. 
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Pseudo Random Sequence 

S: State and initial seed.  

T: Iteration process,  

F: Mapping from state to integer RN (I ) or real RN (U). 
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Period or Cycle Length (L) 

•    rand   (1 processor)      ~  100 seconds 
•  drand48 (1 processor)     ~  1 year  
•  drand48 (100 processor) ~  3 days 
•  SPRNG LFG (105 procs)   ~  10375 years 

Assuming 107 RN/sec per processor 

•  If internal state has M bits, total state space is 2M values. 

•  If mapping is 1-1, space divides into a finite no. of  cycles. 

•  Best case is a single cycle of length 2M, otherwise 2M/L. 

•  It is easy to achieve very long cycle length: 32 or 24 bit 
generators are not long enough! 

•  Entire period of the RNG is exhausted in: 

e.g.,  In 1997, computer has ~108 RN/proc/sec (or 226).  
     Hence, it takes 1 sec to exhaust generator with 26 bits and 1 year for 251 states. 
e.g., consider 1024x1024 sites (spins) on a lattice. With MC, sweep 107 times to get averages. 
      You need to generate 1013 RN. A 32-bit RNG from 1980’s dangerous on today’s computers. 
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Common PRNG Generators 

•  Multiplicative Lagged 
Fibonacci  

•  Modified Lagged 
Fibonacci 

•  Combined Multiple 
Recursive 

•  48 bit LCG 
•  64 bit LCG 
•  Prime Modulus LCG 

zn = zn-k * zn-l  
 

zn = zn-k + zn-l  
 

(modulo 2m ) 

 
zn = a*zn-1  + p 

 
(modulo m ) 

 

zn  = an-1*zn-1 + ...+  
an-k*zn-k + LCG 

 

vary 
initialization 

vary a 

vary p 

vary LCG 

Parallelization Recurrence 

Linear Congruential Generator (LCG)     modulo (mod) is remainder after division 
64-bit word (or 2 32-bit LCG) give a period of ~1018. 
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Uniformity 

•  Output consists of taking N bits from state and making 
an integer in (0,2N-1)  “Ik”. 

 
•  One gets a uniform real “Uk” by multiplying by 2-N. 
 
•  We will study next time how to get other distributions. 
 
•   If there is a single cycle, then integers must be uniform 

in the range (0,2N-1). 
 
•  Uniformity of numbers taken 1 at a time is usually easy to 

guarantee. What we need is higher dimensional uniformity! 
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Sequential RNG Problems 

•  Correlations       non-uniformity in higher dimensions 

Uniform in 1-D but 
non-uniform in 2-D 

MC uses numbers many at a time--they need to be uniform. 
e.g., 128 atom MC moving 3N coords. at random needs 4 PRNG (x,y,z, i) or  

 128 x 4=1024. So every 1024 moves may be correlated!  

Compare error for each PRNG, if similar OK. (Use χ2-test.) 

< f1(xi+1 ) f2 (xi+2 ) >=< f1(xi+1 ) >< f2 (xi+2 ) >

This is the important property 
to guarantee: 
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LCG Numbers fall in planes. 
Good LCG generators have the planes close together. 

For a k-bit generator, do not use them more than k/2 together. 
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What is a chisquare test? 
•  Suppose { x1,x2,….} are N Gaussian random numbers with 

mean zero, and  variance 1 

•  What is the distribution of                 ?   

•                     is the probability that y>χ2 

•  The mean value of y is N, its variance is 2N. 

•  We use it to test hypotheses.  Is the fluctuation we see, what 
we expect? 

•  Roughly speaking  we should have 

•  More precisely look up value of                   “chisquare 
function with N degrees of freedom” 
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Chi-squared test of randomness 
•  HW exercise: do test of several generators 

–  Divide up “cube” into “N” bins. 
–  Sample many “P” triplets.  
–  Number/bin should be n=P/N ±(P/N)1/2 

        In example: expected  n = 10 ±(10)1/2              

N=100 

P=1000 

    GOOD   BAD 
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•  Chi-squared statistic is 
 

–  ni (Ni) is the expected (observed) number in bin i. 
–  Ni is an integer!  (Omit terms with 0 = ni = Ni) 
–  Term with ni = 0  and Ni ≠ 0, correctly give χ2  = ∞.) 
–  Large values of χ2  indicate the “null” hypothesis, i.e. unlikely. 

•  The chi-squared probability is Q(χ2|N-1) 
     (N-1) because of “sum rule”. 

•  Table may help with interpreting the chi-squared probability.  
 

χ 2 = (Ni − ni )
2

nii∑
 See “Numerical Recipes” 

Probability  Interpretation  
     < 1 %    reject  
  1 - 5 %     suspect  
 5 - 10 %     almost suspect  
10 - 90 %    pass  
90 - 95 %    almost suspect  
95 - 99 %    suspect  
    > 99 %    reject  

The incomplete Γ-fct 
N.R. Sec. 6.2 and 14.3  
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Recommendation: 
For careful work use several generators! 

•  For most real-life MC simulations, passing existing 
statistical tests is necessary but not sufficient. 

•  Random number generators are still a black art. 
 
•  Rerun with different generators, since algorithm 

may be sensitive to different RNG correlations. 

•  Computational effort is not wasted, since results 
can be combined to lower error bars. 
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Parallel Simulations 

•  Parallel Monte Carlo is easy? Or is it? 

•  Two methods for easy parallel MC: 
–  Cloning: same serial run, different random numbers. 
–  Scanning: different physical parameters (density,…). 

•  Any parallel method (MPI, ..) can be used. 

•  Problems: 
–  Big systems require excessive wall clock time. 
–  Excessive amounts of output data generated. 
–  Random number correlation? 
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Parallelization of RNGs 

•  Cycle Parameterization: If PRNG has several cycles, 
assign different cycles to each stream 

•  Iteration Parameterization: Assign a different iteration 
function to each stream 

Set of possible states Each cycle gets a disjoint subset 

•   Cycle Division: Leapfrog or Partition. Correlation problems 
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Examples of Parallel MC codes and Problems 

•  Embarrassingly parallel simulations. Each processor has its 
own simulation. Scanning and cloning.  
      Unlikely to lead to problems unless they stay in phase. 

 

•  Lots of integrals in parallel (e.g. thousands of Feynman 
diagrams each to an accuracy of 10-6). 
  Problem if cycle length is exhausted. 

 

•   Particle splitting with new particles forking off new 
processes. Need lots of generators.  
  Problem if generators are correlated initially. 

 

•   Space-time partitioning. Give each local region a 
processor and a generator.  
  Problem if generators are correlated. 
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