The Ising Model

Today we study one of the most studied models in statistical
physics, the Ising Model (1925).

e Some applications:
- Magnetism (the original application)
— Liquid-gas transition
— Binary alloys (can be generalized to multiple components)

e Onsager found the exact answer for the 2D square lattice
(1944). (1D was done by Ising in 1925.)

e Used to develop renormalization group theory of phase
transitions in 1970’ s.

o We'll discuss critical slowing down of Metropolis and a
“cluster method”.

Figures from Landau and Binder (LB), MC Simulations in Statistical
Physics, 2000.
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The Ising Model

e Consider a lattice with L2 sites and the
connectivity of. a square lattice.

e FEach lattice site has a single spin variable: s, = +1.
e With magnetic field h, the energy is:

H=-> JijSiSj —ihisl. and Z=Ye P!

(i.J)

e] is the nearest neighbor (i,j) coupling:
-J > 0 models a ferromagnet.
-J < 0 models an antiferromagnet.

ePicture of spins at the critical temperature T..
Note the connected (percolated) clusters.
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Mapping a liquid-gas model to the
Ising Model

e For liquid-gas transition let n(r) be the density at lattice site
r which can have two values n(r)=(0,1).

E= zvl.jninj + ,uZni
(i.)) i

e First term models an interatomic repulsion.

e Second term is the chemical potential.

e Let’'s map this into the Ising model spin variables:

s=2n—1 or n:E(S+1)

H:XZSZ.S].-I-(V_'_‘“)ZSZ.-I-C

4 (i) 2
J=—=v/4
h=—(v+u)/2
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Phase Diagram (J>0)

e High-T phase: spins are random (uncorrelated).

e T > T, phase near T_: spins are random but correlated:
magnetic short-range (local) order.

e Low-T (T~0) phase: spins are aligned (fully correlated).

o A first-order transition (where there is a discontinuous
jump in M) occurs as H passes through zero for T<T,.

e Similar to liquid-gas phase diagram. Magnetic

field=pressure. .
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Critical point
e Concepts and understanding are universal.
They apply to all phase transitions of a similar type.
e Order parameter is the average magnetization: <s(r)>=m(r).
e Look at correlation function: y(r-r' )=<s(r)s(r’ )>-<s(r)><s(r’ )>.

e Magnetic susceptibility is: dm(r)/dh(r’ )|,so = Bx(r-r’)
e In ordered phase, spins are correlated over long distances.

e At the critical point, fluctuations at all length scales.
LowT

Fig. 4.1 Typical spin configurations for the two-dimensional Ising square lattice: (left) 7 < T; (center) 7"~ T,; (right)
T>»T.
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Magnetization probability
e How does magnetization vary across transition?

e And with the system size?
e In ordered phase, broken symmetry and barrier to flipping.
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Figure 2. Probability distribution Py (s) of the magnetization s per spinof Lx L X L
subsystems of a simple cubic Ising lattice with N = 243 spins and periodic boundary
Te T conditions for zero magnetic field and temperature kgT/J = 4.0 (note that the
critical temperature occurs at about kgTc/J = 4.51[26].

Figure 3. Schematic variation of the probability distribution Pr(m) to
magnetization m in a finite system of linear dimension L from T > Te to !
(left part) and the associated temperature va.rlatlon of the a.verage order pai

< Im| bC swembty” ﬁllC’FCE‘lé Sim lationl™! > 2} and reduced 6

order cumulant Uy, =1-< (right part).



e If we quench too fast we will end in a two phase region.
e The larger the system the sharper the phase transition.

Phase Diagram: T vs. M
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Fig. 2.11 Schematic
phase coexistence
diagram showing the
‘spinodal’ line. Paths
(A) and (B) represent
quenches into the
nucleation regime and
the spinodal

decomposition regime,

respectively.

Magnetization Scaling depends on T:

M~ (T,-T)#

B=0.125 for D=2.
B=0.325 for D=3.
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Spinoidal decomposition
R e

»

Suppose only local spin flips.
e Model for phase separation such as a
binary “alloy” (or oil and vinegar).

e Dynamics depends on whether the
spin is conserved

— Spin flip (left)
— Spin exchange (right) conserves
particle number.
e Transition appears through a
coarsening of the separation.

e Becomes slower and slower as the
transition proceeds: Critical Slowing
down.

exchange
T=0.6T,
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Surfaces/Boundary Conditions

e By quenching quickly we may catch , ,
a “trapped” surface.

e Topological excitation.
e You can see steps, etc.

e (Can use twisted boundary conditions
to study a liquid-gas surface without

worrying about it disappearing.

e Just put -] along one plane (side):
i.e. antiferromagnetic interaction
along one plane.

H = —(%) Jl.jSlS]
J i#0
J = ’
/ —J i=0
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Critical slowing down

. ST Monte Carlo of a zero-field Ising Lattice
* Near the transition Uvs.time and M vs. time.
dynamics gets very slow eTE
if you use any local r
update method. uth
e The larger the system th /C
less likely it is that the lk‘“““
system can flip over. ) U aanadensuniies N
/i |

g il
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Simple Metropolis algorithm

e Simplest Metropolis:

Lots of tricks to make it run faster.

Tabulate exp(-E/kT)

Do several flips each cycle by packing bits into a word
But critical slowing down near Tc.

At low T accepted flips are rare--can speed up by sampling
acceptance time.

At high T all flips are accepted--ergodic problem.

Metropolis importance sampling Monte Carlo scheme

(1) Choose an initial state

(2) Choose a site ¢

(3) Calculate the energy change AF which results if the spin at site ¢
is overturned

(4) Generate a random number r such that 0 <r» < 1

(5) If r < exp(—AE/kgT), flip the spin

(6) Go the next site and go to (3)
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Heat Bath Transition moves

Sample a neighborhood of a given point so that it is in
local equilibrium.

T'(s—>s')= 72((1')) with C(S) = Z n(s")
s"eN(s)

A(S %s') =min| 1,

« Can be used only if it is possible to quickly compute
the normalization ratio, e.g lattice models.

« Acceptance ratio=1 if C(s) is independent of s.
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JAVA Ising applet

https://mattbierbaum.github.io/ising.js/
Dynamically runs using the heat bath algorithm.

t=66

“Tenit

Temperature Init cold
247474178403  Start

.

i )

Exergy per spin

-2.0

1.0

-1.0

Init warm
Grid
Step
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Glauber and Kawasaki dynamics

e Heat bath or Glauber:
— Pick a spin and flip with probability
- Will have lower flipping rate but no
high T problem.
e N-fold way:
— Look at all the sites, choose the site
“i” according to:
— The normalization determines how
time advances.
— Discuss this later with kinetic MC

o Kawasaki dynamics
— Exchange spins and accept or reject

— Spin is constant as in spinoidal
decomposition.

e ALL THESE ARE LOCAL hence suffer
from slowdown.
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Simplest Metropolis:
— Tricks make it run faster.
— Tabulate exp(-E/kT)

— Do several flips each cycle by
packing bits into a word.

Local algorithms

But,

— Critical slowing down ~ T_.

—-At low T, accepted flips are rare
--can speed up by sampling
acceptance time.

—At high T all flips are accepted
--quasi-ergodic problem.

(1)
(2)
)

(4)
(3)
(6)

Metropolis importance sampling Monte Carlo scheme

Choose an initial state

Choose a site ¢

Calculate the energy change AE which results if the spin at site :
is overturned

Generate a random number 7 such that 0 < r < 1

If » < exp(—AE/kgT), flip the spin

Go the next site and go to (3)
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Critical slowing down

e Near the transition
dynamics gets very slow if

>
——p

Fig. 4.2 Schematic

you use any local update v wton of o
method. spontaneous
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e The larger the system the tme for a Monte
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Dynamical Exponent

Monte Carlo efficiency is 1000
governed by a critical g
dynamical exponent Z. r |
With t_ = correlation time i
and &= correlation length “E
1 i
_ : I —X
§ = (Var(O)TOUme/step) T 1\3035
5 i —X
TO ch /D 1ol Lo ?J_HLL/ Lo dovarwl o
] 10 100
L

near7 E>L = 1L

FIG. 1. Log-log plots of correlation times for Monte Carlo

T o< |7 simulations of the two-dimensional Ising model at the critical
temperature as a function of the linear dimension L. The cir-

cles show data for a standard Monte Carlo simulation, and the

Non-local updates reduce the line marked “z=2.125" gives the expected asymptotic slope

exponent, allowing exploration of (Ref. 4). The crosses show data for the new method, with a
The “critical region ” least-squares fit labeled with its slope of “z =0.35.”
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Swendsen-Wang cluster algorithm
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Fig. 5.1 Schematic view of the Swendsen—Wang algorithm for an Ising model: (a) original spin configuration; (b) clusters
formed: (¢} ‘decorated’ clusters.

Wolff cluster flipping method for the Ising model

(1)
@)

€)
(4)

(%)
(6)

Randomly choose a site

Draw bonds to all nearest neighbors with probability
p=1— ¢ Kooig)

If bonds have been drawn to any nearest neighbor site j, draw
boggls to all nearest neighbors £ of site ; with probability p = 1 —
e %

Repeat step (3) until no more new bonds are created

Flip all spins in the cluster

Go to (1)
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Swendsen-Wang algorithm for a g-state Potts model
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Choose a spin

Calculate p =1 — ¢ %% for each nearest neighbor

If p < 1, generate a random number 0 < rng < I;

If rng < p place a bond between sites 7 and j

Choose the next spin and go to (2) until all bonds have been
considered

Apply the Hoshen—Kopelman algorithm to identify all clusters
Choose a cluster

Generate a random integer 1 < R, <g4

Assign o; = R; to all spins in the cluster

Choose another cluster and go to (7)

When all clusters have been considered, go to (1)

No critical slowing down at the critical point.

Non-local algorithm. Prove detailed balance! See FS 399-408
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Correctness of cluster algorithm

e Cluster algorithm:
- Transform from spin space to bond space n;

(Fortuin-Kasteleyn transform of the Potts model)
- Identify clusters: draw bonds between

like spins with probability: p=1-exp(-231/kT)
— Flip some of the clusters.
— This determines the new spins.

Example of embedding method: solve dynamics problem by
enlarging the state space (to spins and bonds).

e Two points to prove: i
— Detailed balance H(G,H)Z—H[(l—p)5n +p56 - S
- joint probability: V4 (i.J) i j
- Ergodicity: we can go anywhere _
How can we extend to other models? p=l—-e€

—2JIKT Y Opmc;™
Tr {T1(o,n) | = %e N T<z-,j>( )

Oct. 27,2020  Atomic Scale Simulation 19

—2J/kT

|



