Cosmic Strings, Domain Walls and the Cosmological Vacuum

Chris Ringeval/CC0 1.0

Malte Buschmann

Elena Koptieva, UIUC Physics, 2024

Topological deffects

Topological defects are stable configurations of matter formed at phase transitions in the very early Universe.

Domain walls are twodimensional objects that form when a **discrete symmetry** is broken at a phase transition.

Cosmic strings are onedimensional objects which form when axial or cylindrical symmetry is broken. Strings can be associated with grand unified particle physics models.

https://www.ctc.cam.ac.uk/outreach/origins/cosmic_structures_two.php

Kibble mechanism.

If topological defects *can* form at a cosmological phase transition, they *will* form.

Causal effects in the early Universe can only propagate as the speed of light c. This means that at a time t, regions of the Universe separated by more than a distance d=ct can know nothing about each other.

Topological defects provide a unique link to the physics of the very early Universe. They can crucially affect the evolution of the Universe!

$$R^{\nu}_{\mu} - \frac{1}{2} \delta^{\nu}_{\mu} R + \Lambda \delta^{\nu}_{\mu} = T^{\nu}_{\mu}$$
$$ds^{2} = -dt^{2} + a^{2} (t) \left[\frac{dr^{2}}{1 - kr^{2}} + r^{2} d\Omega^{2} \right]$$

$$p = w\varepsilon$$
 $T^{\nu}_{\mu} = (\varepsilon + p)u_{\mu}u^{\nu} + p\delta^{\nu}_{\mu}$

$$w = -1$$
 Cosmological vacuum

1

W

W

Friedman equations

$$= -\frac{1}{3}$$
 Cosmic Strings
$$= -\frac{2}{3}$$
 Domain walls
$$\frac{\ddot{a}}{a} = \frac{\Lambda c^2}{3} - \frac{4\pi G}{3}\left(\rho + \frac{3p}{c^2}\right)$$

$$ds^{2} = -dt^{2} + a^{2} (t) \left[\frac{dr^{2}}{1 - kr^{2}} + r^{2} d\Omega^{2} \right]$$

$$p = w\varepsilon \quad T^{\nu}_{\mu} = (\varepsilon + p)u_{\mu}u^{\nu} + p\delta^{\nu}_{\mu}$$

$$w = -1$$
 Cosmological vacuum

$$w = -\frac{1}{3}$$
 Cosmic Strings

$$w = -\frac{2}{3}$$
 Domain walls

Take sphere of physical radius $a(t)r_0$

$$\frac{d^2(ar_0)}{dt^2} = \frac{\Lambda c^2}{3}(ar_0) - \frac{GM}{(ar_0)^2}$$

$$M = \frac{4\pi}{3} \left(\rho + \frac{3p}{c^2}\right) \left(ar_0\right)^3$$

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho + \frac{\Lambda c^2}{3} - \frac{kc^2}{a^2}$$
$$\frac{\ddot{a}}{a} = \frac{\Lambda c^2}{3} - \frac{4\pi G}{3}\left(\rho + \frac{3p}{c^2}\right)$$

Cosmological vacuum problem

$$p=-arepsilon$$
 Cosmological vacuum

QFT:
$$T_{\mu\nu}^{\text{vac}} = -V_0 g_{\mu\nu}$$

 $\varepsilon_{\text{vac}} \sim (10^{18} \text{ GeV})^4 \sim 10^{109} \text{J/m}^3$

Obs:
$$T_{\mu\nu}^{\text{vac}} = -\varepsilon_{\text{vac}}g_{\mu\nu}$$

 $|\varepsilon_{\text{vac}}| \le (10^{-12} \text{ GeV})^4 \sim 10^{-9} \text{J/m}^3$

