Entanglement

Virginia (Gina) Lorenz
University of Illinois Urbana-Champaign

March 18, 2023

Polarization Entanglement

- Photons can be in a superposition of two polarizations

$$
\left(\begin{array}{ll}
\hat{r} & 4
\end{array}\right)
$$

- Two photons can be entangled such that when one of them is measured, they always end up being the same polarization

$$
[(1 \quad 1)+(\rightarrow-)]
$$

- This property allows them to instantaneously affect each other no matter the distance (but information about which state they end up in cannot travel faster than the speed of light)

Properties of Entanglement

$$
\begin{gathered}
\text { at least } \\
\text { "It takes' two to tangle." } \\
\text { J. Eberly, } 2015 \\
\psi_{\text {pair }} \propto|H H\rangle+|V V\rangle \quad \text { Entangled } \\
\text { 1935: Entanglement is } \\
\text { "the characteristic trait of quantum mechanics, the one that } \\
\text { enforces its entire departure from classical lines of thought" } \\
-\mathrm{E} \text {. Schrödinger } \\
\psi_{1} \propto|H\rangle+|V\rangle \\
\psi_{2} \propto|H\rangle+|V\rangle \\
\psi_{12}=\psi_{1} \psi_{2} \propto|H H\rangle+|V V\rangle+|H V\rangle+|V H\rangle \quad \text { Not Entangled }
\end{gathered}
$$

In an entangled state, neither particle has definite properties alone.
\Rightarrow All the information is stored in the joint properties.

1935: Einstein, Podolsky, Rosen (EPR) Paradox

EPR: Action at a distance (non-locality) is spooky.
Is Quantum Mechanics wrong?
Maybe correlations are due to some local element of reality ("local hidden variable" model)?
A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).

EINSTEIN ATTACKS QUANTUM THEORY

Scientist and Two Colleagues Find It is Not 'Complete' Even Though 'Correct.'

SEE FULLER ONE POSSIBLE

Believe a Whole Description of
'the Physical Reality' Can Be
Provided Eventually.

Entangled photons allow new applications

SPOOKY ACTION AT A DISTANCE

https://www.jpl.nasa.gov/news/news.php?feature=5210

Quantum networks: a new type of internet

- Genuinely secure communication through detection of eavesdropping
- Connections with real-world quantum computers (once they are ready)
- Fundamentally new ways of solving computational problems
- Improved sensing of astronomical objects
- Unforeseen applications of the technology

What's the difference with classical correlations?

- Consider socks in a box
- There are two boxes of socks. The socks can be red or green.
- Which color they are is determined randomly by a machine, but the two boxes always have different color socks inside.
- They are sent to distant locations.
- The recipients open the boxes at the same time. Wow! They always find different color sox in the box!

With photons

- We don't know what color the photons are, not because it's hidden, but because the photons are in a superposition of colors
- Their color won't be determined until the recipient sees the color.
- At the instant the color is measured, the color of the other photon becomes the other color.
- So the key differences are:
- The colors are not predetermined (violating realism)
- Measuring the color of one instantaneously sets the color of the other (violating locality)
- How do we test for this?

1964: Bell's theorem

- Bell's theorem gives an inequality that would hold if local realism were true
- The measurements are taken over many entangled pairs and thus are statistical
- The angles are chosen to maximize violation of the inequality

$$
\left[E(a, b)+E\left(a^{\prime}, b\right)+E\left(a^{\prime}, b^{\prime}\right)-E\left(a, b^{\prime}\right)\right] \leq \mathbf{2}
$$

First 3 terms ~ likelihood the results are more similar than different

- If the states were "set ahead of time", the photons would always give the same results for a given setting.

Strong Loophole-Free Test of Local Realism

Lynden K. Shalm, ${ }^{1, \dagger}$ Evan Meyer-Scott, ${ }^{2}$ Bradley G. Christensen, ${ }^{3}$ Peter Bierhorst, ${ }^{1}$ Michael A. Wayne, ${ }^{3,4}$ Martin J. Stevens, ${ }^{1}$ Thomas Gerrits, ${ }^{1}$ Scott Glancy, ${ }^{1}$ Deny R. Hamel, ${ }^{5}$ Michael S. Allman, ${ }^{1}$ Kevin J. Coakley, ${ }^{1}$ Shellee D. Dyer, ${ }^{1}$ Carson Hodge, ${ }^{1}$ Adriana E. Lita, ${ }^{1}$ Varun B. Verma, ${ }^{1}$ Camilla Lambrocco, ${ }^{1}$ Edward Tortorici, ${ }^{1}$ Alan L. Migdall, ${ }^{4,6}$ Yanbao Zhang, ${ }^{2}$ Daniel R. Kumor, ${ }^{3}$ William H. Farr, ${ }^{7}$ Francesco Marsili, ${ }^{7}$ Matthew D. Shaw, ${ }^{7}$ Jeffrey A. Stern, ${ }^{7}$ Carlos Abellán, ${ }^{8}$ Waldimar Amaya, ${ }^{8}$ Valerio Pruneri, ${ }^{8,9}$ Thomas Jennewein, ${ }^{2,10}$ Morgan W. Mitchell, ${ }^{8,9}$ Paul G. Kwiat, ${ }^{3}$ Joshua C. Bienfang, ${ }^{4,6}$ Richard P. Mirin, ${ }^{1}$ Emanuel Knill, ${ }^{1}$ and Sae Woo Nam ${ }^{1,{ }^{1,7}}$
${ }^{1}$ National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA ${ }^{2}$ Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada, N2L 3G1
${ }^{3}$ Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
${ }^{4}$ National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA ${ }^{5}$ Département de Physique et d'Astronomie, Université de Moncton, Moncton, New Brunswick E1A 3E9, Canada ${ }^{6}$ Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA
${ }^{7}$ Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, USA ${ }^{8}$ ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
${ }^{9}$ ICREA-Institució Catalana de Recerca i Estudis Avançats, 08015 Barcelona, Spain
${ }^{10}$ Quantum Information Science Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada (Received 10 November 2015; published 16 December 2015)

We present a loophole-free violation of local realism using entangled photon pairs. We ensure that all relevant events in our Bell test are spacelike separated by placing the parties far enough apart and by using fast random number generators and high-speed polarization measurements. A high-quality polarizationentangled source of photons, combined with high-efficiency, low-noise, single-photon detectors, allows us to make measurements without requiring any fair-sampling assumptions. Using a hypothesis test, we compute p values as small as 5.9×10^{-9} for our Bell violation while maintaining the spacelike separation of our events. We estimate the degree to which a local realistic system could predict our measurement choices. Accounting for this predictability, our smallest adjusted p value is 2.3×10^{-7}. We therefore reject the hypothesis that local realism governs our experiment.

The last 50 years: Quantum Information

1970: Spontaneous Parametric Down-Conversion

- Burnham \& Weinberg, PRL 25, 84 (1970):

*Energy conservation \rightarrow energy entanglement
\dagger Momentum conservation \rightarrow momentum entanglement
Type-I phase-matching
Photons have identical polarizations

Polarization Entanglement

Input: $|H\rangle+\operatorname{Re}^{i \phi}|V\rangle$

Proof of Quantum Correlations

Near-perfect quantum behavior

$$
\left|\psi_{\text {system }}\right\rangle=|V V\rangle+R e^{i \phi}|H H\rangle
$$

Spontaneous four-wave mixing

Conservation of energy

- Spontaneous four-wave mixing in polarizationmaintaining optical fiber:

$$
\Delta k=2 k\left(\omega_{p}\right)-k\left(\omega_{s}\right)-k\left(\omega_{i}\right)+2 \Delta n \frac{\omega_{p}}{c}=0
$$

- Birefringent phase-matching:

Generation of polarization entanglement

Generation of polarization entanglement

$$
\left|H_{s} H_{i}\right\rangle+\left|V_{s} V_{i}\right\rangle
$$

Pump travels on slow axis. Signal and idler travel on fast axis.
One end of the fiber is twisted by 90° relative to the other end.

Three-photon discrete-energy-entangled W-state

$$
|W\rangle=\frac{1}{\sqrt{3}}(|R R B\rangle+|R B R\rangle+|B R R\rangle)
$$

$$
|\psi\rangle=\frac{\beta^{2}}{2}\left(a_{\omega_{B}}^{\dagger} a_{\omega_{R}}^{\dagger}\right)^{2}|0\rangle
$$

Two-pair state 25/75BeaBB-Kp̄titteso/50
Ti:sapphire
Modelocked Laser

$$
|W\rangle=\frac{1}{\sqrt{3}}(|R R B\rangle+|R B R\rangle+|B R R\rangle)
$$

- Test non-locality of quantum mechanics
- Quantum communication protocols
- Robust against loss \& decoherence

Why are entangled states important?

- Responsible for quantum measurements and decoherence
- Central to demonstrations of quantum nonlocality (e.g., Bell's inequalities, GHZ, Hardy, etc.)
- Quantum cryptography - separated particles' correlations allow sharing of secret random key
- Quantum teleportation - transmit unknown quantum state via 2 classical bits + EPR pair
- Quantum computation - intermediate states are all complex entangled states

Entanglement, and the scaling that results, is the key to the power of quantum computing

- Classically, information is stored in a bit register:

101

- A 3-bit register can store one number, from 0-7
- Quantum Mechanically, a register of 3 qubits can store all of these numbers in superposition:

$$
|000\rangle+|001\rangle+|010\rangle+|011\rangle+|100\rangle+|101\rangle+|110\rangle+|111\rangle
$$

Result:

- Classical: one N-bit number
- Quantum: 2^{N} (all possible) N-bit numbers
- N.B. A 300-qubit register can simultaneously store more combinations than there are particles in the universe.
- Acting on the qubits simultaneously affects all the numbers:

$$
(0\rangle+|1\rangle+\ldots \mid(7)) \otimes|f(x)\rangle \Rightarrow|0\rangle|f(0)\rangle+|1\rangle|f(1)\rangle+\ldots .|7\rangle|f(7)\rangle
$$

- Some important problems benefit from this entanglement, enabling solutions of otherwise insoluble problems.

Quantum Logic

Controlled-Not Gate:

$$
|0\rangle_{c}|0\rangle_{t} \rightarrow|0\rangle_{c}|0\rangle_{t}
$$

$$
|0\rangle_{c}|1\rangle_{t} \rightarrow|0\rangle_{c}|1\rangle_{t}
$$

$$
|1\rangle_{c}|0\rangle_{t} \rightarrow|1\rangle_{c}|1\rangle_{t}
$$

$$
|1\rangle_{c}|1\rangle_{t} \rightarrow|1\rangle_{c}|0\rangle_{t}
$$

$$
\left.\left.(0\rangle_{c}+|1\rangle_{c}\right) 0\right\rangle_{t} \xrightarrow{c N O T}|0\rangle_{c}|0\rangle_{t}+|1\rangle_{c}|1\rangle_{t}
$$

2-Qubit interactions lead to entangled states.

Classical Cryptography

Quantum Key Distribution

Security is guaranteed by the laws of quantum physics

Quantum Teleportation

Bennett et al., PRL 70, 1895 (1993)
The basic idea: transfer the (infinite) amount of information in a qubit from Alice to Bob without sending the qubit itself.
Requires Alice and Bob to share entanglement:

$|\psi\rangle$
E.g. Alice measures photons C and A to be in a singlet state.
Then since C and A are perpendicular, and since A and B are perpendicular, C and B must be identical!

Remarks:

- The original state is gone.
- Neither Alice nor Bob know what it was.
- Requires classical communication - no superluminal signaling.
- Bell state analysis is hard.

Experimental Teleportation

1997: First demonstration [Bouwmeester et al., Nature 390, 575 (1997)]
2004: Quantum teleportation across the Danube [Ursin et al., Nature 430, 849 (2004)]

- Now demonstrated teleportation of entanglement, other degrees of freedom, continuous variables, energy states of ions, 2-qubits ...

Satellite-to-ground QKD

MIDWEST COLLABORATION, LED BY IQUUST, AWARDED \$25 MILLION QUANTUM INFORMATION INSTITUTE

The Grainger College of Engineering's Illinois Quantum Information Science and Technology Center (IQUIST) will launch a National Science Foundation Quantum Leap Challenge Institute for Hybrid Quantum Architectures and Networks (HQAN). The collaborative institute spans three Midwest research powerhouses, all of which are members of the Chicago Quantum Exchange: The University of Illinois, University of Chicago, and the University of Wisconsin. HQAN also includes partnerships with industry and government labs.
Established with a $\$ 25$ million, five-year NSF award, the HQAN institute will be one of only three Quantum Leap
Challenge Institutes in the country. Quantum Leap Challenge Institutes will bring together multidisciplinary
researchers and diverse partners to advance scientific, technological, and workforce development goals.

NEW CENTER AWARDED \$12.6M BY DOE

粊 Jul 13, 2020
A team from the University of Illinois at Urbana-Champaign's Grainger College of
Engineering was awarded an Energy Frontier Research Center by the Department of Energy (EFRC).

The new center is highly-collaborative spanning three institutions, with additional team members and leadership from University of Illinois-Chicago and the SLAC National Accelerator Laboratory. On campus, the program draws together experts in quantum information science, physics and materials science from the Illinois Quantum Information Science and Technology Center (IQUIST), from the Physics Department, Materials Science and Engineering, and the Materials Research Laboratory.

U.S. Department of Energy Unveils Blueprint for the Quantum Internet at 'Launch to the Future: Quantum Internet’ Event

CHICAGO, IL - In a press conference today at the University of Chicago, the U.S. Department of Energy (DOE) unveiled a report that lays out a blueprint strategy for the development of a national quantum internet, bringing the United States to the forefront of the global quantum race and ushering in a new era of communications. This report provides a pathway to ensure the development of the National Quantum Initiative Act, which was signed into law by President Trump in December of 2018.

Around the world, consensus is building that a system to communicate using quantum mechanics represents one of the most important technological frontiers of the 21st century. Scientists now believe that the construction of a prototype will be within reach over the next decade.

In February of this year, DOE National Laboratories, universities, and industry met in New York City to develop the blueprint strategy of a national quantum internet, laying out the essential research to be accomplished, describing the engineering and design barriers, and setting near-term goals.
"The Department of Energy is proud to play an instrumental role in the development of the national quantum internet," said U.S. Secretary of Energy Dan Brouillette. "By constructing this new and

- The National Quantum Initiative Act was signed into law on December 21, 2018. The law gives the United States a plan for advancing quantum technology, particularly quantum computing.
- This act has spurred a tsunami of funding for quantum research and industry.
- Illinois positioned itself well and has become a global leader in quantum technology.
- University research teams span the range of quantum technologies
- Captured 4/10 National Quantum Centers for research (=\$280M)
- Chicago Quantum Exchange nucleated academic and industry partnerships
- Quantum technology industry is strong and continues to grow in Illinois

What is the Public Quantum Network (PQN)?

PQN will transmit entangled photons through existing fiber, connecting UIUC quantum optics labs with public institutions throughout Urbana-Champaign.

This creates a publicly accessible network for

- Extensive public engagement: public participation in quantum technologies, quantum curricula in underserved communities (8th grade through community college)
- Fundamental research: state-of-the-art quantum protocols and tests at scale
- Quantum technology innovation: deep involvement of industry partners

Public Quantum Network Launch Event

Saturday, November 4, 1:00-4:00 p.m. The Urbana Free Library | For all ages.

Celebrate the launch of the first publicly accessible quantum network in the nation! Where everyone can play with quantum particles.
Come explore with us!

Quantum activities for all ages
Liquid nitrogen ice cream

Quantum Secure Communication

1010101010101010101010110101010101010 1001010010111101010101111010111011000101 1010101010101010101010110101010101010

> Unforeseen applications from people likeyou

$$
2
$$

'the Physical Reality' Can Be Provided Eventually.

Join us for a Quantum Adventure!

Conclusion

- Quantum entanglement breaks local realism
- Generating entangled photons \& reconstructing their state is relatively easy, but engineering for applications is still a challenge
- Entanglement is not just "spooky", it's useful!

