Measuring of small AC signals using lock-in amplifiers.

✓ Narrow band selective amplifiers + amplitude detector. ✓ Lock-in amplifiers

Simplified block diagram of a lock-in amplifier

Lock-in amplifier. How it works.

Phase shift

Phase shift

Lock-in amplifier technique. Simple math.

$$U_{x} = U_{x0} \sin(\omega_{1}t + \theta_{1}) - \text{input signal}$$
$$U_{r} = \sin(\omega_{2}t + \theta_{2}) - \text{reference signal}$$

$$U_{de \mod} = U_x \bullet U_r = U_{x0} \sin(\omega_1 t + \theta_1) \bullet \sin(\omega_2 t + \theta_2) = \frac{U_{x0}}{2} [\cos((\omega_1 + \omega_2)t + \theta_1 + \theta_2) + \cos((\omega_1 - \omega_2)t + \theta_1 - \theta_2)]$$

and after low-pass filtering $\longrightarrow U_{de \mod} = \frac{U_{x0}}{2} \cos(\theta_1 - \theta_2)$

Physics 403 Spring 2020

Two channels demodulation

7

In many technical applications we need to measure both components (E_x, E_y) of the input signal. To do this most of the modern lock-in amplifiers are equipped by two demodulators.

Invention of the Lock-in amplifier

In 1961, Princeton Applied Research was founded by a group of scientists from Princeton University and the Plasma Physics Laboratory. With a desire to establish significant improvements to research instrumentation the team developed the first commercial lock-in amplifier in 1962.

Robert Henry Dicke 1916-1997

Model HR-8

f range: = 5Hz÷150kHJz

Analog and digital lock-ins

SR510 & SR530 Lock-In Amplifiers

•0.5 Hz to 100 kHz frequency range
•Current and voltage inputs
•Up to 80 dB dynamic reserve
•Tracking band-pass and line filters
•Internal reference oscillator
•Four ADC inputs, two DAC outputs
•GPIB and RS-232 interfaces

Analog lock-ins from Stanford Research Systems

Analog lock-ins

Block-diagram of analog lock-in

Analog lock-ins

SR124

Low noise, all analog design No digital interference 0.2 Hz to 200 kHz measurement range Low noise current and voltage inputs Harmonic detection (f, 2f, or 3f) Selectable input filtering

Digital lock-ins

TwoDSPlock-inamplifiers:SR830fromStanfordResearchSystemsand7265Signal Recovery.

The main advantages of digital lock-ins: * high phase stability; * broad frequency range; * ideal for low and ultra low frequencies (up to 0.001Hz) * harmonics up to 65,536 (7265), 19,999 (SR830).

Analog and digital lock-ins

SR830

Block-diagram of digital lock-in

Block-diagram of digital lock-in

(i) Applying a small test signal (locked to the reference signal) to the studied object

Examples: frequency domain spectroscopy (second sound), tunneling spectroscopy (analysis of the I-V curves), dielectric spectroscopy etc.

(ii) Modulating of the studied signal by the signal locked to the reference signal

Examples: fluorescence experiment

Experimental setup for measurement of the dielectric susceptibility (electrical conductivity) in the temperature range 15-450K

Scanning of the frequency of the AC signal applied to transmitter we can find the frequencies of the acoustical resonance.

Second sound experiment

Transmitter (heater)

3/26/2020

Optical pumping

Physics 403 Spring 2020

Optical pumping

Optical pumping

The choice of amplitude modulation

$$I_{sweep} = \frac{V_{FG}}{5.1k\Omega}$$
$$B_1 = k_{sweep} \bullet I_{sweep}$$

 $K_{sweep} \cong 0.6G/A$

If $V_{FG} = 1V$ B₁ ~ 0.12mG

Lock-in amplifier technique: some applications Optical pumping

Mapping 0.5-2.5A from March 1st 2012: Graph6

Tunneling spectroscopy

 eV_{DC} only

Courtesy of Anna Miller and Everett Vacek

Tunneling spectroscopy

eV_{DC}+eV_{AC}

Courtesy of Anna Miller and Everett Vacek

Lock-in amplifier technique: demo

