

Introduction to ROOT

Daniel R. MacLean Physics 403 January 28, 2020

What is ROOT?

- **ROOT** is an object-oriented framework for large-scale data handling & analysis.
- It is originally developed for high energy physics experiments (still used by most particle physics experiments), but now also finds application in astronomy, data mining, etc.
- For example, the analysis and plots of recent Higgs Boson discovery are mostly done using ROOT.

Higgs Boson Discovery

Why use ROOT?

- ROOT can efficiently handle structured large data sets (PetaBytes ▲).
- ROOT has advanced statistical analysis algorithms (multidimensional fitting, neural network, etc).
- ROOT has scientific
 visualization tools with 2D and 3D graphics; not as 'pretty' as e.g. Origin, but functional.
- ROOT is an open-source project. It is free, and available for Windows, Mac, and Linux machines.

ALICE Detector

Using ROOT

	<pre>doid histEfficiency() { const Int_t nPer = 5; Double_t U2efficency[n] Double_t U1efficency[n]</pre>	Per] = {92.8, 39.72, 40.61, 40.77, 36.35}; Per] = {93.79, 39.72, 40.61, 40.77, 36.35};	
	Double_t V2efficency[n Double_t V2efficency[n	Per] = {, 39.72, 40.61, 40.77, 36.35}; Per] = {93.79, 39.72, 40.61, 40.77, 36.35};	
	Double_t Xlefficency[n Double_t X2efficency[n	Per] = {93.79, 39.72, 40.61, 40.77, 36.35}; Per] = {93.79, 39.72, 40.61, 40.77, 36.35};	
	Double_t Y2efficency[n Double_t Y1efficency[n	Per] = {46.50, 39.72, 40.61, 40.77, 36.35}; Per] = {46.50, 39.72, 40.61, 40.77, 36.35};	
m for \$10 year (prove for			
5 7 E Breadann - S Galann - Galann - S Galann - Galann -		Welcome to R00T 6.04/06 http://root.cern.ch (c) 1995-2014, The R00T Team From heads/v6-04-08-patchesgv6-04-04-12-g9436735, Oct 13 2015, 12:34:29 Try '.help', '.demo', '.license', '.credits', '.quit'/'.q'	
		ot [0] THID* h1 = new THID("h1", "h1", 100, -5, 5) lass THID *) 0x7fcb60181030 ot [1] h1->Fil(Rondom("gaus") ot [2] h1->Fil("pol1")	
Prim .	Connect from:		All March Associations for the second statement of the
	0		

Three user interfaces:

- Graphic User Interface
- Command line
- Macros and scripts

We will use all of them to help us with the analysis, you will write your own (or modify existing) analysis scripts.

 \rightarrow ROOT is installed on the LINUX machine in 5103.

 \rightarrow You can also do your work by remotely logging into the machine (ask Daniel).

 \rightarrow Finally, you can install it on your own computer... There is an extremely useful blog post by a physicist on medium.com that will take you through each step:

https://medium.com/@blake.leverington/installing-cern-root-under-windows-10-with-subsystem-for-linux-beta-75295defc6d4

Muon Experiment

 \rightarrow 16 PMT signals, w/both **energy** and **timing** information, are recorded by the data acquisition system (DAQ). An analyzer program converts the binary data into a ROOT tree.

- TTree is one of the most commonly used structures in ROOT.
- One can store variables, arrays and any other C++ datatype in the tree 'branches'
- If we store only floating number variables in the branches, this tree structure is also called a Tntuple
- Usually we "loop" over a TTree to obtain relevant information from each entry and make plots

Histogram and Fitting

Histogram of a PMT energy signal

- From the ROOT tree, one can extract information recorded by each PMT & make histograms.
- You can then fit them with appropriate functions.

Data Cuts and Analysis

Muon g-factor measurement

- Data analysis involves the selection of interesting events, called data cuts.
- You will also perform fitting and other analysis work to perform calibrations & extract important physics quantities.

Where to find more information?

- Users Guide and Reference Manuals are available at: http://root.cern.ch
- Online tutorials are very useful: http://root.cern.ch/root/html/tutorials/
- Sample scripts can also be found in MyRoot on the course portal (for plotting MCA spectrum, γ - γ coincidence experiments, etc)
- Online forums, such as roottalk: http://root.cern.ch/phpBB3/, where you can ask help from the user community.