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Key Goals of this Lab
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Combine the tools and techniques we’ve learned to characterize 
magnetic properties of materials

• Magnetization and (complex) magnetic susceptibility

• Ferromagnetism and hysteresis

• Thermal effects and the Curie temperature

This is the first week of a three-week lab
Counts as your final exam



Outline
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Combine the tools and techniques we’ve learned to characterize 
magnetic properties of materials

• Ferromagnetism

• Measuring magnetic properties of materials

• Lab setup and measurements

• Analysis notes

This is the first week of a three-week lab 
Next week: Temperature dependence of magnetic properties



Reminder: Magnetic Response of Materials
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𝐵 = 𝜇! 𝐻 +𝑀
B

Magnetic induction
Magnetic flux density

Determines forces on
moving free charges 

via Lorentz force law:

�⃗� = 𝑞 𝐸 + �⃗�×𝐵

Two things are often called the “magnetic field”: B and H

H
Magnetic field intensity

Magnetizing field

Field created only by
moving free charges.

In vacuum, 𝐵 = 𝜇!𝐻.

M
Magnetization

Magnetic polarization

Field created only by
moving bound charges, 
i.e. magnetic response 

of the medium



Reminder: Magnetic Response of Materials
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𝐵 = 𝜇! 𝐻 +𝑀
Since many materials have approximately linear response, we define the magnetic susceptibility:

𝑀 = 𝝌𝐻

In general, susceptibility… :
1. … is a function 𝜒(𝐻) (nonlinearity)
2. … is a 2nd-rank tensor (matrix)    (scalar for isotropic materials)
3. … may be complex (phase lag, loss) 𝜒 = 𝜒! − 𝑖𝜒′′
4. … may have history dependence (hysteresis) not captured by this 

expression (see below!)

𝐵 = 𝜇) 1 + 𝜒 𝐻 = 𝜇)𝜇*𝐻 = 𝜇𝐻

𝜇 = 𝜇)𝜇* =
𝜕𝐵
𝜕𝐻

𝜇* = 1 + 𝜒 =
1
𝜇)
𝜕𝐵
𝜕𝐻



Real μ: 

Aside: Loss from Complex Permeability
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𝐵 = 𝜇) 𝐻 +𝑀 = 𝜇+ − 𝑖𝜇′′ 𝐻
Why is a material with complex permeability (𝜇!! ≠ 0) lossy?

Complex μ: 

In analogy with 
𝑑𝑊 = 𝐹 𝑑𝑥, 

we have
𝒅𝑾 = 𝑯 𝒅𝑩

Zero 
integral

Nonzero 
integral!



Reminder: Magnetic Response of Materials
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𝐵 = 𝜇! 𝐻 +𝑀 = 𝜇! 1 + 𝜒 𝐻 = 𝜇!𝜇"𝐻

We classify materials into three major categories:

Diamagnetic 𝜒 < 0 𝜇3 < 1 Weakly repelled
Paramagnetic 𝜒 > 0 𝜇3 > 1 Weakly attracted
Ferromagnetic 𝜒 ≫ 0 𝜇3 ≫ 1 Strongly attracted

More next time on these… for now, ferromagnetism!



This ordering occurs only below some transition 
temperature, the Curie temperature (Tc).

Some materials exhibit spontaneous anti-alignment of 
neighbors: antiferromagnetism, ferrimagnetism. 0.0 0.5 1.0

0.0

0.5

1.0
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 M
s(T

)/M
s(0

)

What is Ferromagnetism?
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E.V. Colla

Some materials experience spontaneous magnetic ordering in the absence of an applied field.

Happens when aligning interactions among neighboring atomic/molecular dipoles (typically 
from Pauli exclusion, exchange interactions) exceed magnetic dipole anti-alignment forces and 
thermal randomization.

Typical spontaneous magnetization 
versus temperature



Ferromagnetic Materials
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E.V. Colla

Material Curie temp. (K)

Co 1388
Fe 1043
Fe2O3

* 948
FeOFe2O3

* 858
NiOFe2O3

* 858
MgOFe2O3

* 713
MnBi 630
Ni 627
MnSb 587
MnOFe2O3

* 573
Y3Fe5O12

* 560
CrO2 386
MnAs 318
Gd 292

* = Ferrimagnetic (local anti-alignment, but unbalanced – acts like a ferromagnet)

Aleksandr Stoletov
(1839 –1896) 

“Stoletov” curve

dM
dH

c =

Saturation



Domains and Hysteresis
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E.V. Colla

M=0
1. Initially, dipoles are 
ordered within a domain, 
but domains are random

M~Ms

2. Strong external field 
maximally aligns domains3. Internal fields retain partial 

alignment without external field

4. Strong external field 
maximally aligns domains



Visualizing Magnetic Domains
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E.V. Colla John Kerr
1824 – 1907

Magneto-Optic Kerr Effect (MOKE): 
Rotation of polarized light reflected
from a magnetic material

Michael Faraday
1791 – 1867

Faraday Rotation: Rotation of 
polarized light passing through a 
transparent magnetic material

Typical Kerr microscope
Radboud Univ., Nijmegen, the 

Netherlands



Visualizing Magnetic Domains
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E.V. Colla

Kerr microscope
University of Uppsala, Sweden

Kerr microscope image of a NdFeB
sample, showing domains

Wikipedia



Visualizing Magnetic Domains

Physics 401 13

E.V. Colla

Domain walls in a grain of silicon steel, moving as the 
external magnetic field is increased

Wikipedia



Hysteresis and Coercivity
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E.V. Colla

Hysteresis necessarily involves energy losses from re-magnetization.
If the domains are “sticky”, we need to do work to overcome that.

𝑊 = 𝑉+𝐻 - 𝑑𝐵
For uniform fields over volume V

(analogous to dW = F dx)

𝑊4556 = 𝑉0𝐻 - 𝑑𝐵 = 𝑉 ∗ 𝐴4556



Applications of Magnetic Materials
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“Hard” Materials “Soft” Materials

Permanent magnets

Data storage media

Cores for inductors, 
electromagnets, power 
transformers…



AC Measurement of Magnetic Permeability
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0

0 0 0
,

( , ) (1 ( , ))
H

dBH H
dH w

µ w µ c w= + = 0 1H = H +H sinωt

H0

B0

Bw

( )B f H=

Apply a small modulation to H to measure 
the derivative of the B-H hysteresis loop

𝐵 = 𝑓 𝐻" + 𝐻# sin𝜔𝑡 = 𝑓 𝐻" +
𝑑𝑓
𝑑𝐻

𝐻# sin𝜔𝑡 + ⋯



Setup #1: Mapping the Hysteresis Loops
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E.V. Colla



Setup #1: Mapping the Hysteresis Loops
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E.V. Colla

𝐻7 +𝐻8 𝑠𝑖𝑛 𝜔𝑡

Supply 𝑯𝟏 𝐬𝐢𝐧𝝎𝒕, 
small AC modulation of 
the magnetizing field

Measure 𝑩𝝎, resulting 
modulation of the 
magnetic induction

Supply H0, DC 
magnetizing field

DMM to monitor H0

𝐻 =
𝑁"𝐼"
2𝜋𝑟

0 1H = H +H sinωt

H0

B0

Bw

( )B f H=SAMPLE



Setup #1: Mapping the Hysteresis Loops
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J. Boparai



More on Hysteresis Loops
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There isn’t just one hysteresis curve!

Key values for saturation curve:

• BR is the saturation remanence: 
the maximum residual magnetism 
at zero applied field

• HC is the coercivity: the applied 
field required to demagnetize a 
sample that has been saturated.

A family of AC hysteresis loops for grain-oriented electrical steel 
(Wikipedia:Remanence)

https://en.wikipedia.org/wiki/Remanence


Demagnetizing the Core
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E.V. Colla
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Demagnetizing the Core

Physics 401 22

Data and plots by E.V. Colla

Example: Demagnetization of 4C65 
toroid from Ferroxcube
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Measuring the Magnetic Permeability
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Data and plots by E.V. Colla

Example: DC current profile and magnetic 
permeability of Magnetics ZW44715TC
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From Permeability to Hysteresis Loop
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E.V. Colla
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ECE Storeroom unknown material sample #5

How to get a good data set for an unknown sample?

1. Perform one coarse (i.e., fast) scan over IDC (that 
is, H0) to find the required dynamic range. 
How wide a range must we cover?
How small a step size is needed for detail?

Based upon this data set…

2. Perform a precision scan for data analysis

IDC: current in primary coil (in A)

Y: amplitude measured by SR830 (in mV)



From Permeability to Hysteresis Loop
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E.V. Colla

3. Calibration: relating what you measure to what 
you want to know 

What does the lock-in amplifier actually measure?

… the EMF imposed on the pickup coil

𝑉45>?@AB = −
𝑑Φ
𝑑𝑡

= −
𝑑
𝑑𝑡

𝐵 - 𝑆

The AC current driven in primary coil L2 is:

𝐼6 =
𝑉7 sin𝜔𝑡
𝑅C



From Permeability to Hysteresis Loop
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E.V. Colla

3. Calibration: relating what you measure to what you want to know 

𝑉45>?@AB = −
𝑑Φ
𝑑𝑡

= −
𝑑
𝑑𝑡

𝐵 - 𝑆

𝐼6 =
𝑉7 sin𝜔𝑡
𝑅C

Primary coil is a toroid of Np turns carrying a current Ip creates a 
magnetic field H, and thus adds a flux dΦ:

𝐻 =
𝑁6𝐼6
2𝜋𝑟

𝑑Φ = 𝜇+𝐻 - 𝑑�⃗� =
𝜇 𝐼 𝑁 𝑡
2𝜋

+
D!

D" 𝑑𝑟
𝑟
=
𝜇 𝐼 𝑁 𝑡
2𝜋

ln
𝑅C
𝑅8



From Permeability to Hysteresis Loop
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E.V. Colla

3. Calibration: relating what you measure to what you want to know 

𝑉45>?@AB = −
𝑑Φ
𝑑𝑡

= −
𝑑
𝑑𝑡

𝐵 - 𝑆

Total flux detected by the pickup coil:

Φ = 𝑁6A>?E6𝑑Φ =
𝜇 𝑁6A>?E6𝐼6 𝑁6 𝑡

2𝜋
ln
𝑅C
𝑅8

Careful about whether the lock-in is giving you amplitude or r.m.s.!

Toroid inductance:

𝐿 =
Φ
𝐼
= 𝜇3𝐿7 = 𝜇F − 𝑖 𝜇′′ 𝐿7 𝐿7 =

𝜇7 𝑁6A>?E6 𝑁6 𝑡
2𝜋 ln

𝑅C
𝑅8

Geometric inductance in vacuum



From Permeability to Hysteresis Loop
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E.V. Colla

-1.0 -0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Y 
(m

V)

IDC (A)
-400 -200 0 200 400

0

1000

2000

3000

4000

5000

6000

µ'

H (A/m)

𝜇& = 𝜇! − 𝑖 𝜇′′
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𝑑𝐼.
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𝑉"
𝑅/
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Note: proportional to ω!



From Permeability to Hysteresis Loop
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E.V. Colla
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4. Integration: μr(H) is a local derivative, so we must integrate it to find B(H)
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Using the Acquisition Software – E.V. Colla
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E.V. Colla

Icon on the 
desktop

1st week 
experiment

2nd week 
experiment

Demagnetization 

B-H measurement

Preparation of the 
profile of the 
experiment



Using the Acquisition Software – E.V. Colla
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E.V. Colla

Open a new file

Create a new file

Save prepared file for future use

Preparing the measurement profile and using the profile template



Using the Acquisition Software – E.V. Colla
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E.V. Colla

Preparing the measurement profile and using the profile template



Using the Acquisition Software – E.V. Colla
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E.V. Colla

Preparing the measurement profile

Example of a simple protocol

Advanced profile
Samples low-field region finely
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Using the Acquisition Software – E.V. Colla
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E.V. Colla

Measurement Window 

Lock-in amplifier response 

The profile of the applied
DC current

Structure of the data 
file  (B-H experiment)



Data Analysis Using Origin – E.V. Colla
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E.V. Colla

To calculate the permeability, it’s easiest to use the template :

\\engr-file-03\phyinst\APL Courses\PHYCS401\Common\Origin templates\AC magnetic Lab\MU_CALCULATION.otwu

Raw data Parameters Calculated results

It does not contain the equations – you have to write them!



Data Analysis Using Origin: Integrating – E.V. Colla
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E.V. Colla

0( ) ( )rB H H dHµ µ= ò



Data Analysis Using Origin: Integrating – E.V. Colla
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E.V. Colla

0( ) ( )rB H H dH offsetµ µ= +ò

Ms

-Ms



References
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E.V. Colla

• Information about magnetic materials can be found in:
\\engr-file-03\phyinst\APL Courses\PHYCS401\Experiments\AC_Magnetization\Magnetic Materials

• SR830 (Lock-in Amplifier) manual
\\engr-file-03\phyinst\APL Courses\PHYCS401\Common\EquipmentManuals\SR830m.pdf


