MICROWAVE TROUBLESHOOTING

COMMON REASONS FOR UNEVEN HEATING:

MICROWAVE 15 ...

- DAMAGED
- DEFECTIVE
- CURSED
- RUNNING OUTDATED DRIVERS
- OVEREXCITED
- VENGEFUL
- ABSENT
- PRODUCING MACROWAVES
- ACTUALLY AN OLD TV THAT SOMEONE ADDED A HINGE TO

XKCD: What If 131

Microwave Cavities

Prof. Jeff Filippini
Physics 401
Spring 2020

XKCD: What If 131

Key Goals of this Lab

Study the behavior of microwaves in resonant cavities.

- Waves in waveguides
- Standing waves and resonance
- Lab setup
- Microwave cavity experiment
- **Bonus**: The Cosmic Microwave Background

This is the second week of a two-week lab

Reminder: Plane Waves in Free Space

Source-free Maxwell's Eqns

$$\nabla \cdot \vec{D} = 0 \qquad \nabla \cdot \vec{B} = 0$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \qquad \nabla \times \vec{H} = \frac{\partial \vec{D}}{\partial t}$$

$$\nabla \cdot \vec{B} = 0$$

$$\nabla \times \vec{H} = \frac{\partial \vec{D}}{\partial t}$$

Uniform plane wave in zdirection, with $\vec{H} \perp \vec{E}$

Wave equation

Fourier components

$$E_{x} = E_{0}e^{i(\omega t - kz)}$$

General solution

$$E_{x}(z,t) = f\left(t - \frac{z}{v}\right) + g\left(t + \frac{z}{v}\right)$$

$$E_x = \sqrt{\frac{\mu}{a}} H_y \equiv \mathbf{Z} H_y$$

$$v = \frac{1}{\sqrt{\varepsilon\mu}} = \frac{c}{\sqrt{\varepsilon_r \mu_r}}$$
 $E_x = \sqrt{\frac{\mu}{\varepsilon}} H_y \equiv ZH_y$ $Z_0 = \sqrt{\frac{\mu_0}{\varepsilon_0}} \approx 377 \,\Omega$

Wikipedia: Electromagnetic Radiation

Wave Propagation in Waveguides

Lord Rayleigh 1842-1919

Wikipedia

TE₁₀ mode

Waveguides allow 1D routing of EM waves (vs. $1/r^2$ spreading in 3D)

Impose specific **boundary conditions** on the propagating modes E.g., zero E-field tangential to conducting wall

Standing Waves in Cavities

Like particle in a box: Arbitrary wavelengths can't sustain in a finite cavity

$$E_{y} = E_{0} \sin(k_{x}x) e^{i(\omega t - kx)}$$

$$+$$

$$E_{y} = E_{0} \sin(k_{x}x) e^{i(\omega t + kx)}$$

$$=$$

$$L=n*\lambda/2$$

Phase shift by π at reflection

E.V. Colla

Standing Waves in Cavities

TE Resonant Frequencies

Ex: **TE**₁₀₁ mode (m=1, n=0, p=1)

$$\omega_{101}^2 = v_0^2 \pi^2 \left[\left(\frac{1}{a} \right)^2 + \left(\frac{1}{c} \right)^2 \right]$$

Lowest freq. if b smallest dimension

Coupling to the Cavity

Equivalent Circuit

Power Coupling Efficiency

$$Q_L = \frac{\omega L}{R + Z_0}$$

$$Q_L = \frac{\omega L}{Z_0 \left(1 + \frac{R}{Z_0}\right)} = \frac{Q_0}{1 + \beta}$$

inner conductor

 Q_0 : Quality factor without external load β : Coupling coefficient

Maximum power transfer when:

$$Z_0 = R \implies \beta = 1$$

$$\implies Q_L = \frac{1}{2}Q_0$$

E.V. Colla

Overview of the Experiment

E.V. Colla

Experimental Setup

E.V. Colla

#1: Wavelength Measurement

By sliding the detector along the slotted line (waveguide), find the distance between minima.

E.V. Colla

#1: Wavelength Measurement

By sliding the detector along the slotted line (waveguide), find the distance between minima. Distance between consecutive minima of the standing wave (nodes) is $\lambda/2$.

E.V. Colla

#2: Cavity Resonance

Use the plunger to change the length of the cavity in the z-direction. Use the cavity detector to search for maxima in stored power. Identify plunger positions (dimension c) corresponding to TE_{101} and TE_{102} .

E.V. Colla

#2: Cavity Resonance

$$\omega_{102}^2 = v_0^2 \pi^2 \left[\left(\frac{1}{a} \right)^2 + \left(\frac{2}{c} \right)^2 \right] \qquad \qquad f_{102} = \frac{v_0}{2} \sqrt{\left(\frac{1}{a} \right)^2 + \left(\frac{2}{c} \right)^2}$$

E.V. Colla

#2: Cavity Resonance

E.V. Colla

#3: Coupling – Detecting the Magnetic Field

Detector couples to flux threading the pickup loop (magnetic dipole), and thus to the perpendicular H-field

While on resonance, rotate the orientation of the input loop from vertical (in 10° steps to 360°) and read the cavity power detector.

E.V. Colla

#3: Coupling – Detecting the Magnetic Field

Experimental result

Fitted to $A|(\cos(\alpha+\phi))^n|+A_0$

E.V. Colla

#4: Electric Field Distribution

The presence of a dielectric reduces the effective length of the cavity at a given resonance frequency. This effect grows with electric field strength E_{ν} at the dielectric.

- 1. Without the dielectric, the cavity's length on resonance is c_0 .
- 2. Place the dielectric in the cavity and change its position l_i in 0.5 cm steps.
- 3. At each dielectric position, tune the plunger to resonance and record c_i .
- 4. Plot $\Delta c_i = |c_0 c_i|$ versus l_i ; from this infer E_v vs. l.

#4: Electric Field Distribution

Cavity Resonance in the Frequency Domain

$$\omega_{102}^2 = v_0^2 \pi^2 \left[\left(\frac{1}{a} \right)^2 + \left(\frac{2}{c} \right)^2 \right] \qquad \qquad f_{102} = \frac{v_0}{2} \sqrt{\left(\frac{1}{a} \right)^2 + \left(\frac{2}{c} \right)^2}$$

E.V. Colla

Quality Factor of the Unloaded Cavity

The quality factor of the unloaded cavity's TE_{101} mode is given by:

$$Q_0 = \frac{abc(a^2 + c^2)}{\delta[2b(a^3 + c^3) + ac(a^2 + c^2)]}$$

In this expression:

• δ: skin depth of wall at given frequency

$$\delta = \sqrt{2\rho/\mu\omega}$$

• p: resistivity of cavity wall material

•
$$\mu = \mu_r \mu_0 \approx \mu_0 = 4\pi \times 10^{-7}$$

Quality Factor of the Unloaded Cavity

For red brass:

- $\rho = 6 \times 10^{-8} \Omega \cdot m$
- $\mu = 4\pi \times 10^{-7}$
- $\delta = \sqrt{2\rho/\mu\omega} = 2.25 \times 10^{-6} m$

$$Q_0 = \frac{abc(a^2 + c^2)}{\delta[2b(a^3 + c^3) + ac(a^2 + c^2)]}$$

$$Q_0 \sim 7700$$

E.V. Colla

- 1. Acquire data with the oscilloscope in X-Y mode
- 2. To plot I(f), you need to download both Ch1 and Ch2 data
- 3. Apply a triangle waveform to the modulation input of the oscillator
- 4. Take care when setting the **time scale** setting on the scope estimate it from the scanning frequency of the triangle wave
- 5. Apply the **calibration** equation to calculate the frequency of the oscillator from the recorded modulation voltage

		-2 -1 wp / 1	·· = 1 ··· 1			
	A(X)	B(Y)	C(Y)	D(Y)	E(Y) 💁	
Long Name	time	I	time	Vmod	f	
Units	S	Α	S	V	Hz	
1	0	#########	0	3.85055	3.0776	
2	1E-6	#########	1E-6	3.84992	3.07758	
3	2E-6	#########	2E-6	3.84578	3.07742	
. 4	3E-6	#########	3E-6	3.84297	3.07732	
$f = 0.03706 \cdot V_{\text{mod}} + 2.9349$						

E.V. Colla

Voltage-controlled oscillator (VCO) ZX95-3250a-S+ from

Mini-Circuits®

E.V. Colla

FM Calibration for microwave oscillator

#5: Cavity Resonance

#5: Cavity Resonance

By changing the **coupling** between cavity and transmission line, we simultaneously change both the **quality factor** of the cavity resonance and the **power delivered** to the cavity

Appendix: Bragg Diffraction

Bragg's Law

Interference maxima

$$n\lambda = 2d\sin\theta$$

E.V. Colla

Appendix: Bragg Diffraction

E.V. Colla

Appendix: Bragg Diffraction

Arno Penzias & Robert Wilson, Bell Labs, NJ

Early, hot, ionized

Late, cool, atoms

Prediction: Alpher & Herman, 1948

Discovery: Penzias & Wilson, 1964 (Nobel 1978)

Filippini & Vieira groups

