Torsional Oscillator

Episode II: Driven Response

The Driven Torsional Oscillator

1. Driven torsional oscillator: Theory
2. Experimental setup and kinematics
3. Resonance
4. Beats
5. Nonlinear effects
6. Comments

Some Historical Examples

IT

Tacoma Narrows (WA) Bridge

Tacoma Narrows (WA) Bridge - 1940

I

Tacoma Narrows (WA) Bridge - 1940

I

Tacoma Narrows (WA) Bridge

Note:1940 failure is not best understood as elementary forced resonance (as often described!), but instead a process called aerodynamic flutter. See Billah \& Scanlan (1990).

Egyptian Bridge, St. Petersburg (1905)

I

Egyptian Bridge, St. Petersburg (1905)

I

Millennium Footbridge, London (2000)

Video \#1

Video \#2

I

Viscous dampers

Flutter in Aviation
Milestones in Flight History Dryden Flight Research Center

PA-30 Twin Commanche Tail Flutter Test

Introducing the Driven Torsional Oscillator

Goals: For a damped, driven torsion oscillator, analyze the response to a sinusoidal drive, the transient response, and the steady state solution

Angular displacement:

$$
\theta_{0} \cos (\omega t)
$$

Torque:

$K \lambda \theta_{0} \cos (\omega t)$

$$
\lambda=\frac{\mathbf{L}_{1}}{\boldsymbol{L}_{1}+\boldsymbol{L}_{2}}
$$

$$
\begin{gathered}
\boldsymbol{I} \ddot{\boldsymbol{\theta}}+\boldsymbol{K} \boldsymbol{\theta}+\boldsymbol{R} \dot{\boldsymbol{\theta}}=\tau_{m}=K \lambda \boldsymbol{\theta}_{0} \cos (\omega t) \\
\text { Viscous damping } \quad \text { Torque by motor }
\end{gathered}
$$

```
0 : angular deflection of the disk
I: moment of inertia [kg-m}\mp@subsup{}{}{2}
R : damping constant [N-m-s]
K: torsional spring constant [N-m]
```


Experimental Setup

Motor

Pendulum

Anatomy of a Solution

$$
\boldsymbol{I} \ddot{\boldsymbol{\theta}}+\boldsymbol{K} \boldsymbol{\theta}+\boldsymbol{R} \dot{\boldsymbol{\theta}}=\tau_{m}=\boldsymbol{K} \lambda \theta_{0} \cos (\omega t)
$$

Solutions are the sum of two components:

Homogeneous

Particular

1. Transient solution (last week!)
2. Steady-state solution

Temporary, to match initial conditions.

Persistent, due to driving torque $\boldsymbol{\tau}_{\mathrm{m}}$.
$I \ddot{\theta}+R \dot{\theta}+K \theta=0$
$\theta(t)=A e^{-a t} \cos \left(\omega_{1} t-\phi\right)$
$a=R / 2 I$
$\omega_{0}=\sqrt{\mathrm{K} / \mathrm{I}}$
$\omega_{1}=\sqrt{\omega_{o}^{2}-a^{2}}$

The homogeneous equation of motion

Transient solution

Attenuation constant

Natural (angular) frequency

Damped (angular) frequency

Steady-State Solution

1. Transient Solution

Initially the system responds at its characteristic frequency ω_{1}

$$
\theta_{t}(t)=|A| e^{-a t} \cos \left(\omega_{1} t+\phi\right) \rightarrow \omega_{1}=\sqrt{\omega_{0}^{2}-a^{2}}
$$

Once this response dies away, the system responds only at the driving frequency ω
2. Steady-State Solution

$$
\theta_{s s}(t)=\operatorname{Re}\left(\theta(\omega) e^{i \omega t}\right) \Rightarrow I \ddot{\theta}+\boldsymbol{K} \boldsymbol{\theta}+\boldsymbol{R} \dot{\boldsymbol{\theta}}=\tau_{m}=\boldsymbol{K} \lambda \boldsymbol{\theta}_{0} \cos (\omega t)
$$

Substituting $\theta_{s 5}(t)$ in equation of motion we will find the equations for $\theta(\omega)$

$$
\theta(\omega)=\frac{\lambda \omega_{0}^{2} \theta_{0}}{\sqrt{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+4 \omega^{2} a^{2}}} e^{-i \beta(\omega)} \quad \text { and } \quad \beta(\omega)=\tan ^{-1}\left(\frac{2 \omega a}{\omega_{0}^{2}-\omega^{2}}\right)
$$

Steady-State Solution

$$
\boldsymbol{I} \ddot{\boldsymbol{\theta}}+\boldsymbol{K} \boldsymbol{\theta}+\boldsymbol{R} \dot{\boldsymbol{\theta}}=\tau_{\boldsymbol{m}}=\boldsymbol{K} \lambda \boldsymbol{\theta}_{0} \cos (\omega \boldsymbol{t})
$$

$$
\begin{aligned}
& \theta_{s}(t)=B(\omega) \cos (\omega t-\beta(\omega)) \\
& B(\omega)=\frac{\lambda \theta_{o} \omega_{o}^{2}}{\sqrt{\left(\omega_{o}^{2}-\omega^{2}\right)^{2}+\omega^{2} \gamma^{2}}} \\
& \tan \beta(\omega)=\frac{\omega \gamma}{\omega_{o}^{2}-\omega^{2}} \\
& \gamma=\frac{R}{I}=2 \frac{R}{2 I}=2 a
\end{aligned}
$$

Steady state solution

Amplitude function

Phase function

Damping constant

Putting It All Together

So the time-domain form for the steady-state solution is:

With homogeneous and particular solutions now in hand, the general solution to the equation of motion is a sum of these components:

$$
\theta(t)=\theta_{t}(t)+\theta_{s s}(t)=A e^{-a t} \cos \left(\omega_{1} t-\phi\right)+B \cos (\omega t-\beta(\omega))
$$

Coefficients A and ϕ are determined by initial conditions

Resonance: Amplitude

Fitting function: $\quad \theta(f)=\frac{A \bullet f_{0}^{2}}{\sqrt{\left(f_{0}^{2}-f^{2}\right)^{2}+\gamma^{2} f^{2}}} \begin{array}{r}\omega=2 \pi f ; \gamma=2 a\end{array}$

To create a new fitting function go
 "Tools" \rightarrow "Fitting Function Builder" or press FB_{8}

Model	Resonance1 (User)		
Equation	$\mathrm{y}=\mathrm{A}^{*} \mathrm{f} \mathbf{0}^{\wedge} \mathbf{2} / \mathrm{sqrt}\left(\left(f 0^{\wedge} \mathbf{2}-\mathrm{x}^{\wedge} \mathbf{2}\right)^{\wedge} \mathbf{2}+\mathrm{x}^{\wedge} \mathbf{2}^{*} \mathrm{gamma}^{\wedge} \mathbf{2}\right)$		
Reduced Chi-Sqr	3.00E-04		
Adj. R-Square	0.999411988		
		Value	Standard Error
pend	A	0.286662	0.001663551
pend	f0	0.500271	2.14E-04
pend	gamma	0.062856	$4.98 \mathrm{E}-04$

Resonance: Phase

By scanning the driving frequency f_{d}, we can measure the amplitude and phase shift of the oscillating pendulum as a function of frequency (i.e. the transfer function).

Both parameters (amplitude and phase) can be extracted by the DAQ program, or by Origin

Resonance: Taking Data

Take care in your choice of step size in frequency in order to capture the resonance's shape

Quality Factor \& Log Decrement

We have discussed two ways of characterizing the rate at which oscillations are damped out:

- Logarithmic decrement, δ : Log of the amplitude ratio between consecutive oscillations
- Quality factor, Q: Ratio of stored energy to energy lost per radian of oscillation (cycle/2 π)

$$
\begin{gathered}
\delta \equiv \ln \left(\frac{\theta\left(t_{\max }\right)}{\theta\left(t_{\max }+T_{1}\right)}\right)=\ln \left(\frac{e^{-a t_{\max }}}{e^{-a\left(t_{\max }+T_{1}\right)}}\right)=a T_{1} \\
\delta \equiv \ln \left(\frac{8.49}{7.35}\right) \approx 0.144 \\
Q=\frac{\omega_{1}}{R / I}=\frac{\omega_{1}}{2 a}=\frac{\pi}{a} \frac{\omega_{1}}{2 \pi}=\frac{\pi}{a} \frac{1}{T_{1}}=\frac{\pi}{\delta} \\
Q \approx 21.8
\end{gathered}
$$

Quality Factor \& Log Decrement

In addition to the time-domain formulation above, there is a (nearly) equivalent formulation in the frequency domain.

We can compute $\boldsymbol{Q}=\boldsymbol{\omega}_{1} / \Delta \omega$ (or $\left.f_{1} / \Delta f\right)$, where $\Delta \omega$ is the bandwidth of the resonance curve.
$\Delta \omega$ is the width of the resonance curve when it falls to half of its peak power level (not amplitude!), i.e. the full-width at halfmaximum (FWHM) of power.

Here $\boldsymbol{Q} \approx 7.9$.

Resonance: Angular Displacement Amplitude

Solve for the amplitude

$$
\begin{gathered}
\left|\theta_{s s}(t)\right|=\frac{\lambda \omega_{0}^{2} \theta_{0}}{\sqrt{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+4 \omega^{2} a^{2}}} \\
\left|\theta_{s s}(t)\right|=\frac{\lambda \omega_{0} \theta_{0}}{2 a}=\lambda \theta_{0} \bullet Q
\end{gathered}
$$

If we combine...

- high driving amplitude $\boldsymbol{\theta}_{0}$
- high quality \boldsymbol{Q}
(equivalently, low damping factor a)
... in a mechanical system, then it will accumulate a lot of oscillation energy, which could result in its destruction!

Beats: Theory (Symmetric)

Suppose that we measure the sum of two harmonic signals of frequencies ω_{1} and ω_{2}

$$
y_{1}=A \sin \left(\omega_{1} t+\varphi_{1}\right) ; \quad y_{2}=B \sin \left(\omega_{2} t+\varphi_{2}\right)
$$

Consider first the case that $\mathrm{A}=\mathrm{B}$ (equal amplitudes):

$$
y=y_{1}+y_{2}=2 A \sin \left(\frac{\omega_{1}+\omega_{2}}{2} t+\beta_{1}\right) \cos \left(\frac{\omega_{1}-\omega_{2}}{2} t+\beta_{2}\right) \quad \beta_{1,2} \equiv \frac{\varphi_{1} \pm \varphi_{2}}{2}
$$

If $\omega_{1} \approx \omega_{2}$ (close frequencies), then take $\omega \equiv \frac{\omega_{1}+\omega_{2}}{2} \approx \omega_{1,2}$ and $\Omega \equiv \frac{\omega_{1}-\omega_{2}}{2}$

Beats: Theory (General)

Now consider the more general case where $\boldsymbol{A} \neq \boldsymbol{B}$, and ignore relative phases for simplicity

$$
y_{1}=A \sin \left(\omega_{1} t\right) ; \quad y_{2}=B \sin \left(\left(\omega_{1}+\Omega\right) t\right)
$$

Then we have: $\quad y=y_{1}+y_{2}=\boldsymbol{C}(\boldsymbol{t}) \sin \left(\left(\omega_{1}+\boldsymbol{\beta}\right) t\right)$, where:

$$
\begin{gathered}
C(t)=\sqrt{A^{2}+B^{2}+2 A B \cos (\Omega t)} \\
\beta(t)=\tan ^{-1}\left(\frac{B \sin (\Omega t)}{A+B \cos (\Omega t)}\right)+ \begin{cases}0, & A+B \cos (\Omega t) \geq 0 \\
\pi, & A+B \cos (\Omega t)<0\end{cases}
\end{gathered}
$$

Aside: Deriving the General Beat Formula

Consider the phasor construction below. The two beating sinusoidal signals appear as the heights (y-values) of the phasors of lengths A and B. We seek an expression for the height of the phasor of length C.

$$
y(t)=y_{1}(t)+y_{2}(t)=C(t) \sin \left(\omega_{1} t+\beta(t)\right)
$$

The amplitude $C(t)$ may be found using the Law of Cosines:

$$
\begin{gathered}
C^{2}=A^{2}+B^{2}-2 A B \cos \gamma \\
\gamma=2 \pi-\omega_{2} t-\left(\pi-\omega_{1} t\right)=\pi-\left(\omega_{1}-\omega_{2}\right) t \\
C^{2}=A^{2}+B^{2}+2 A B \cos \left(\left(\omega_{2}-\omega_{1}\right) t\right)
\end{gathered}
$$

This is the envelope, modulated at the beat frequency

The phase angle $\beta(t)$ may be found by extending a right triangle with hypotenuse C. Then we can observe that:

$$
\tan \beta=\frac{B \sin \left(\left(\omega_{2}-\omega_{1}\right) t\right)}{A+B \cos \left(\left(\omega_{2}-\omega_{1}\right) t\right)}
$$

This is a shift in the oscillation phase relative to $y_{1}(t)$.

Beats: Experiment

Time domain trace

Beating spectrum

Beats in our Driven Torsional Oscillator

$$
\theta(t)=\theta_{t}(t)+\theta_{s s}(t)=A e^{-a t} \cos \left(\omega_{1} t-\phi\right)+B \cos (\omega t-\beta(\omega))
$$

$$
\theta_{t}(t) \rightarrow 0
$$

When we change the drive, we introduce a new, second frequency

The beats we see decay over time (i.e. they're part of the transient solution). How fast depends upon damping.

When you work on resonance data, wait until you see the steady-state oscillations!

Beat Envelope

$$
\theta(t)=\theta_{t}(t)+\theta_{s s}(t)=A e^{-a t} \cos \left(\omega_{1} t-\phi\right)+B \cos (\omega t-\beta(\omega))
$$

$\theta_{\mathbf{t}}(\mathrm{t}) \rightarrow \mathbf{0}$ These decaying beats can be seen clearly in an "envelope" plot

Origin 8.6: Analysis \rightarrow Signal Processing \rightarrow Envelope

Beats: Fitting

$$
\theta(t)=\theta_{t}(t)+\theta_{s s}(t)=A e^{-a t} \cos \left(\omega_{1} t-\phi\right)+B \cos (\omega t-\beta(\omega))+C
$$

First, we apply an FFT to find

Result: $\omega_{1}=3.1402 \mathrm{rad}^{-1}$ and $\omega=2.8298 \mathrm{rad}^{-1}$

Beats: Fitting

$$
\theta(t)=\theta_{t}(t)+\theta_{s s}(t)=A e^{-\frac{t}{t_{0}}} \cos \left(\omega_{1} t-\phi\right)+B \cos (\omega t-\beta(\omega))+C
$$

8 fitting parameters

From fit

A 0.65012
$\mathrm{t}_{0} \quad 199.64912$
$\omega_{1} \quad 3.13666$
$\phi \quad 0.33135$
B $\quad-0.74076$
$\omega \quad 2.82464$
$\beta \quad-0.87829$
C $\quad-0.11176$

Result from FFT:
$\omega_{1}=3.1402 \mathrm{rad}^{-1}$ and $\omega=2.8298 \mathrm{rad}^{-1}$

Beats: Fitting - Residuals

- Regular Residual of Sheet 1

Compare residuals to original pendulum spectrum
Possible origins for "extra" peaks?

1. Nonlinear behavior of pendulum
2. Motor driving force not perfectly single-frequency
3. Fitting function is not ideal

Beats: Another View

$$
\theta(t)=\theta_{t}(t)+\theta_{s s}(t)=A e^{-a t} \cos \left(\omega_{1} t-\phi\right)+B \cos (\omega t-\beta(\omega))
$$

$$
\theta_{t}(t) \rightarrow 0
$$

We also can analyze the decrease of the amplitude of the ω_{1} component by analyzing the spectrum as a function of time

Beats: Fitting
From fitting

ω_{1}	3.13666
f1	0.4992 Hz
ω	2.82464
f2	0.4496 Hz

From FFT
$f 1 \quad 0.499 \mathrm{~Hz}$
f2 $\quad 0.451 \mathrm{~Hz}$

Beats: RLC Circuit

Beats: RLC Circuit

Harmonics: Experiment

If we drive the oscillator at $f_{d}=f_{0} / 2$ or $f_{d}=f_{0} / 3$ (a sub-harmonic of the resonant frequency), we observe more complex motion of the pendulum

Harmonics: Experiment

This is a steady-state response - it does not disappear over time!
Couplings between different frequencies suggest non-linearity somewhere in the system...

Origin of Harmonics

Drive includes tiny components at harmonics (multiples) of the nominal drive frequency. If close to resonance, these can excite the resonator and be amplified.

A detailed analysis by P. Debevec (UIUC Physics) has shown that even if $\phi=\phi_{0} \sin \left(\omega_{d} t\right)$ exactly, our drive torque will still contain several harmonics of ω_{d}.

