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The Driven Torsional Oscillator

Driven torsional oscillator: Theory
Experimental setup and kinematics
Resonance

Beats

Nonlinear effects
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Some Historical Examples
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Tacoma Narrows (WA) Bridge - 1940
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Tacoma Narrows (WA) Bridge

Note:1940 failure is not best understood as elementary forced
resonance (as often described!), but instead a process called
aerodynamic flutter. See Billah & Scanlan (1990).
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https://aapt.scitation.org/doi/pdf/10.1119/1.16590

Egyptian Bridge, St. Petersburg (1905)
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Egyptian Bridge, St. Petersburg (1905)
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https://www.youtube.com/watch%3Fv=y2FaOJxWqLE

Millennium Footbridge, London (2000)
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Tuned mass inertial dampers
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Viscous dampers
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Flutter in Aviation

Milestones in Flight History
Dryden Flight Research Center

PA-30 Twin Commanche

April 5, 1966




Introducing the Driven Torsional Oscillator

Goals: For a damped, driven torsion oscillator, analyze the response to a
sinusoidal drive, the transient response, and the steady state solution

Angular displacement:
0ocos(wt)

Torque:

KA@ycos(wt)

L,
L + 1L,

Y

10 + KO + RO = t,, = K\@cos(wt
" 0 ( ) r0 : angular deflection of the disk A

/ \ I : moment of inertia [kg-m?]

- . R : damping constant [N-m-s]
Viscous damping Torgue by motor K : torsional spring constant [N-m] )

\_
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Experimental Setup

Motor Pendulum
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Anatomy of a Solution
10 + KO + RO = 1,, = K\Oycos(wt)

Solutions are the sum of two components:

Homogeneous 1. Transient solution (/ast week!) Temporary, to match initial conditions.
Particular 2. Steady-state solution Persistent, due to driving torque t,,.
/Ié +RO+KO6=0 The homogeneous equation of mo®
= _
Q e(t) =Ae atCOS(wlt — ¢) Transient solution
Q
= a=R / 21 Attenuation constant
i)
m -——
LU W =4K / I Natural (angular) frequency

\gl - \/ o —a’ Damped (angular) frequency J

Physics 401
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Initially the system responds at its }

1. Transient Solution characteristic frequency o,

Steady-State Solution /{

[ 0.(t)= ‘A‘/e"‘” cos(a)14+ P) » o= \/a)(f - azl

system responds only at the driving

frequency ® ] So the steady-state solution must have the same
time dependence as the drive

{Once this response dies away,'the

2. Steady-State Solution

[9“(1) = Re(8(w)e™ )} - [I@ +KO@+RO=r1,= Klaocos(wt)}

Substituting &.,(t) in equation of motion we will find the equations for (@)

Aw’6, e 20
0((0) — 02 0 e p(@) and ﬂ(a)) — tan—] 2 a .
\/(co(f—a)z) +40’a’ @, — @
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Steady-State Solution

16 + K@ + RO = t,, = K\Oycos(wt)

Q
—
=\
~—

Il

B(w)cos(a)t —,B((o))

o — o
R
R_,K_,,
1 21

Steady state solution

Amplitude function

Phase function

Damping constant

Physics 401
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Putting It All Together

So the time-domain form for the steady-state solution is:

C 0

2
0 _(t)= A®, < cos(wt )
A 2
%}j - a)z) + 4w@

\_ , Phase )
J—

Amplitude B(w)

With homogeneous and particular solutions now in hand, the general solution to the equation of
motion is a sum of these components:

[ 0(t)=06,(1)+0_(t)= Ae™™ cos(w,t — §)+ B cos(wt — (a)))}

Coefficients A and ¢ are determined by initial conditions
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Resonance: Amplitude

- Aef’
N Fitting function:  O(f) = :

| 2 2 2¢2
f,=0.50Hz ‘ \/(fo ! ) T
(fitting) !

o=2xnf; y=2a

—
S To create a new fitting function go
v L e e o
® “Tools" ->»"Fitting Function Builder” or
press F8
e
L Regular Residual of Sheet1 pend
0 —— Gauss Fit Counts
[ 124 Z:::m. f:y:sfwtw'san(Pl/Z)»'exp(-?‘«x-xc)/wm
o - 1 1 :reduceﬂ Chi-S 1.69162 /
104 |Adi R-Square 0.89685
JE L R E
Equation y=A*f0"2/sqrt((f0"2-x"2)"2+x 2*gamma’2) § 61 /
Reduced Chi-Sqr 3.00E-04 N &
Adj. R-Square 0.999411988
Value Standard Error 21
pend A 0.2866 0.001663551 ob \ —— MMM
pend fO 0.500271 2.14E-04 Regular Residual of Sheet1 pend
pend gamma 0.062856| 4.98E-04
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Resonance: Phase

O (rad)

2n

motor
3L e ‘/w/' pendulum
[ 2
E Phase {r ______
2¢ —
¥ j ©
¥ S O
[ S [
; S — I
1} D> :
; S
|
0f '
L . . . P L I Y —
0.1 1 0 2 4
f | (Hz) time (s)

By scanning the driving frequency f4, we can measure the amplitude and phase shift
of the oscillating pendulum as a function of frequency (i.e. the transfer function).

Both parameters (amplitude and phase) can be
extracted by the DAQ program, or by Origin

Physics 401
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Resonance: Taking Data

] ' S e U O 0
actual resonance curve

—m— data points, Af~0.18Hz (51 points)
| —m— data points, Af variable (34points)

o0s  f=0.495Hz ¥

0.04

0.03 |

Amplitude

0.01 [ l

0.1 1
Frequency (Hz)

10

Physics 401

Take care in your choice of step
size in frequency in order to
capture the resonance’s shape
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@ (rad)

Quality Factor & Log Decrement

We have discussed two ways of characterizing the rate at which oscillations are damped out:
Logarithmic decrement, 6: Log of the amplitude ratio between consecutive oscillations

Quality factor, Q: Ratio of stored energy to energy lost per radian of oscillation (cycle/2r)

max+T1)
[ 8 9122
: 7 35454 6.50472
[ 9( max) /\ /\ /\ 5/7\7S
I
1 0 1 time3(s) 5 7

Physics 401

651n<

Q=

0 (tmax) — In
0 (tmax + T1) B e

e

—Almax

—a(tmax+T1)

8.49
§d =1In (—) ~ 0.144

7.35

w1 _(,()1 T[C()l
R/l  2a a2m
Q~=21.8

w1l
aT1

([
)

>:aT1
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Quality Factor & Log Decrement

In addition to the time-domain formulation

EEEEEREREEERERIRRE IR L) ]
f,=0.496Hz 1 ‘ i E E EEEE i above, there is a (nearly) equivalent
2 - L L .
Iy s formulation in the frequency domain.
e g Af=0.0626Hz
EREE

We can compute Q = w4 /4w (or f1/Af),
where Aw is the bandwidth of the resonance
curve.

dl
=S

Amplitude
oS

Aw is the width of the resonance curve when it
falls to half of its peak power level (not

: i amplitude!), i.e. the full-width at half-

03 04 05 06 0708091 maximum (FWHM) of power.

f (Hz)

S5

_-.‘25-__Il_- f==ki==ii=d nakaminn

Here Q = 7.9.
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Resonance: Angular Displacement Amplitude

2
B Aa, 6,
Solve for the amplitude ‘ ss (t)‘ - 5
\/(co(f - a)z) +4w’a’
/Ia) 6,
... and on resonance (w = wg), we have: ( )‘ = ﬂg ® Q

If we combine...
* high driving amplitude 90

* high quality Q
(equivalently, low damping factor a)

... in @ mechanical system, then it will
accumulate a lot of oscillation energy,
which could result in its destruction!

Physics 401 24




Beats: Theory (Symmetric)

Suppose that we measure the sum of two harmonic signals of frequencies w; and w,
y1 = Asin(w,t + @1); y, = Bsin(w,t + ¢;)

Consider first the case that A=B (equal amplitudes):

. (1)1"‘(1)2 w1 — Wy ﬁ EQ”liQOZ
Yy =¥V + Yo = 2A sin (Tt + ﬁ1> CcoS (—t + ﬂZ) 1,2 —2
If w; = w, (close frequencies), then take w = W1TWz w1, and 2 = _‘“1;“)2
y = 2A cos(2t + ;) sin(wt + ;)
2 ;\\ //"'\\/ //—\ ®= 0.00278 = 0.00294
\ / \ / \}\
0 10
> }%& y
/
)\ / /
2 [V \\_/ \\__/ 3 '
o 5IOI0(I) IIIIIII 1 O(I)OO IIIIIII 1 '5600 0.0027 0.0028 0.0029 0.003 0.0031
time (s) f (Hz)
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Beats: Theory (General)

Now consider the more general case where A + B, and ignore relative phases for simplicity

y; = Asin(w,t); y, =B sin((a)1 + Q)t)
Then we have: v = y; + v, = C(t) sin((w; + B)t), where:
C(t) = /A% + B2 + 2AB cos(Qt)

B sin((t >
B(t) = tan~ (Qt) N 0, A+ Bcos(Qt) =0
A + B cos(Qt) T, A+ Bcos(Qt) <0

T\ /""\ 1] "\ \/AZ + B? + 2AB 100 |
ot \\ / \ // \ : o= ; 0.00278 o= 0.00294
i \ \ \ I
TN A \ \ VA% + B2 -24B
[ ] X 10 |
of
> L
[ /L\ /M\ S 1
: /\ 7\ y
i /' \ /\ /
-2+ / \ / \ /
) {1z {111z
-V NV NV ) 11 1 1 1
o 5000 10000 15000 o'omf (Hz) ho
time (s)

Physics 401
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Aside: Deriving the General Beat Formula

Consider the phasor construction below. The two beating sinusoidal signals appear as the heights (y-values)
of the phasors of lengths A and B. We seek an expression for the height of the phasor of length C.

y(t) = y1(t) + y2(t) = C(t) sin(w,t + (1))

Y2(t) The amplitude C(t) may be found using the Law of Cosines:
C? = A* + B> — 2AB cosy
Yy =21 —wyt — (m— wit) =1 — (w; — wy)t
C? = A% + B? 4+ 2AB cos((w; — wq)t)
This is the envelope, modulated at the beat frequency

v

The phase angle B(t) may be found by extending a right
triangle with hypotenuse C. Then we can observe that:

B sin((wz — wl)t)

A+ B cos((wz — a)l)t)
This is a shift in the oscillation phase relative to y, (t).

tanf =

Physics 401 27




Beats: Experiment

o(rad)

t (sec)
Time domain trace

Physics

401

Amplitude
S (2]

0000000

Two peaks ]
corresponding to
®; and ®,= ®w; +L _

0.4 0.6 0.8
Frequency (Hz)

Beating spectrum
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Beats in our Driven Torsional Oscillator

[ (1) =0.(1) + 0. (t)= Ae™™ cos(w,t — @) + B cos(wt — f(®)) \
Ne()D0 . '

When we change the drive, we
introduce a new, second frequency

‘\[‘\\w |
\‘ H‘H\““‘

The beats we see decay over time (i.e. T o
they’re part of the transient solution). &
How fast depends upon damping.

O T T ST ST T ST - ——

When you work on resonance data, -4
wait until you see the steady-state
oscillations!

4

ol
If =
; I[—
|
§.
o

o(rad)
S
e
e

I o 10 20 30 40 50 60 PhyS|CS 401 510 520 530 540 550

time(s) time(s)




Beat Envelope

[ 0(t)=0,(1)+0. (t)= Ae™™ cos(w,t — @)+ B cos(wt— (a)))}

4-||||||.

0(rad)

® (rad)

Origin 8.6: Analysis - Signal Processing -» Envelope

Physics 401
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Beats: Fitting

{H(t) =0.(t)+6. (1)= Ae™™ cos(w,t — @)+ Bcos(wt — f(@))+ C}

First, we apply an FFT to find
w1, and w

!

0.45037
(0=2.8298)

Magnitude

R - o - o B R
“0 100 200 300 400 500 E /\\

0.45 0.50
Frequency(Hz)

Result: w,=3.1402 rad! and w=2.8298 rad!

Physics 401
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Beats: Fitting

Eé?(t) =0.(t)+6 (1) = Ade cos(w,t — @)+ Bcos(wt — f(w))+ C}

A Valle " Standard 8 fitting parameters
g omw el ] From fit
1t —— R ‘
I A 0.65012
t, 199.64912
0 3.13666
o 0.33135
B -0.74076
() 2.82464
B -0.87829
C -0.11176
_2 ||||||||| | R T T W N N W T T T T W N N W | T W T T W N N | T W N T S N N 1 1 4
0 100 200 300 400 500 Result from FFT:
time (s) w;=3.1402 rad! and w=2.8298 rad-!

Physics 401 32




Beats: Fitting - Residuals = s
] = Regular Residual of Sheet1 0.4975 ]
02} o 72 _ ;
© t .
E 2
3 c E ]
= O 48[ 3
8 I 0.45122 :
Z — .
s * : 0.39915 ||0-44736
3 :
§ N | T ST ST S S S N | IS S S T S
8 0.490
2
o
-0.2 -
o 200 w00 100 ; \ I | \ I
Independent Variable \A / \ Pendlﬂum
. . . » 50 A Vv \
Compare residuals to original pendulum spectrum MM\J
of

Possible origins for “extra” peaks?

0.02 F

1. Nonlinear behavior of pendulum - Residuals
2. Motor driving force not perfectly single-frequency 001 f
3. Fitting function is not ideal ¥

Frequency (Hz)

I Phybl\.b “uU.l 33




O(rad)

Beats: Another View

[ 0(t)=06,(1)+06. (t)= Ae™™ cos(w,t — @)+ B cos(wt — (a)))}

|
4_||| bl

0,(t)>0

We also can analyze the decrease of the amplitude

of the ®, component by analyzing the spectrum as
a function of time

motor First 55 sec
0.4 \\ \

R (V)
>
N
4

.
N
e

I~
0oL b \
0.4 0.45 0.5 .55
(') ; 1'0 1'5 2'0 2'5 3'0 3'5 4'0 4'5 5'0 5‘ ‘5 5(;0 5(;5 5';0 5;5 5;0 5;5 5;0 5;5 51;0 51;5 5 f (HZ) \
First 55 sec Last 55 sec Last 55 sec
Origin 9.0: Analysis - Signal Processing - FFT
I Physics 401
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Beats: Fitting

D

O (ra

...........................................................
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Beats: RLC Circuit

VVVW
R2

@
[

=

V.

L

Ve (V)

\ .

V (V)

: Graph2

time (ps)
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Beats: RLC Circuit

Find peaks

o b IFE exfr o worroac:
~~
Q(D C VC Z, OOM \ i
@,
L > |
- _0.1- '0.1 I
o o 100 0 50
time (pus)
Envelope ]
[ 1 310kHz "
04 [ ,.".\ 4 .
; o e ' 340kHz
i \ 2%, e % e s e 100 - .
\ P vl ® O’.‘. CAR ] !
RN y FFT |

Ve (V)
Magnitude
[ §
-

u
‘l
10 / |
] » - 1
] . W % ]
| ,l Y s ]
e e e e 200 300 400 500 600
0 50 100 f (kHZ)
time (ps)
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Harmonics: Experiment

©
©
(o

~—
©

If we drive the oscillator at f; = fo/2 or f; = fo/3 (a sub-harmonic of the
resonant frequency), we observe more complex motion of the pendulum

1)

od~0.50,

|

0.3

0.0

——
.

P

20
time (s)

30

0.3

e
[®

Amplitude

e
[

0.0 |

Physics 401
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£,=0.245Hz

2f,=0.488Hz=f,

3£,=0.772Hz |

...............................................................................
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Harmonics: Experiment

This is a steady-state response — it does not disappear over time!
Couplings between different frequencies suggest non-linearity somewhere

in the system...

0.3

—
T
S
N
© 0.0
0.3F \/\j \/J
...........................................................
10 15 20 25 30 35 40

time (s)

I Beginning of time record

®4~0.50, ﬂ ﬂ (\ [\ ﬂ {\ [\
0.3:—
= [
s [
® [
0.0_/
-0.3-
w e P P PR - 0
time (s)
End of time record
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Origin of Harmonics

f,=0.245 Hz

510 y

0 (degree)

170 |

0.0 . 0.6 0.8

Drive includes tiny components at harmonics (multiples) of
the nominal drive frequency. If close to resonance, these can
excite the resonator and be amplified.

A detailed analysis by P. Debevec (UIUC Physics) has shown
that even if ¢ = ¢, sin(w,t) exactly, our drive torque will
still contain several harmonics of w.
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