

Professor Jeff Filippini
Physics 401
Spring 2020

ILLINOIS

Key Concepts for this Lab

1. Networks with distributed parameters What if the $R / L / C$ are spread out? Thevenin-equivalent networks
2. Pulse propagation in transmission lines

When signals move like waves
Reflections from resistive and reactive loads
3. Impedance matching

Getting power where you want it to go

When do Wires Carry Waves?

Thus far we've implicitly assumed that $\mathrm{V}(\mathrm{t})$ and $\mathrm{I}(\mathrm{t})$ are synchronized throughout our circuits - but signals travel at finite speed $(v=c / n)$!

- Speed of light: $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}=30 \mathrm{~cm} / \mathrm{ns}=1 \mathrm{ft} / \mathrm{ns}$

Real signals are typically slower by a factor (n) of order unity

Over distances that are a significant fraction of the wavelength, we're better off thinking of wave propagation

Frequency	Application	$n \lambda$
60 Hz	AC power lines	5000 km
580 kHz	WILL-AM broadcast	$500 \mathrm{~m}(0.3$ mile $)$
2.4 GHz	WiFi	$12.5 \mathrm{~cm}(5$ inches $)$
430 THz	Red light	$0.7 \mu \mathrm{~m}$

Transmission Lines

Transmission line: a specialized cable (or other structure) designed to conduct alternating current of radio frequency (RF).

- Limit wave reflection by maintaining uniform impedance (details below!)
- Reduce power loss to radiation

Wikipedia: Transmission Line

Design goal:

Maximize power from the source delivered to the load

Common Types of Transmission Lines

Twisted pair
Wikipedia

Coaxial cable

Twin lead
Wikipedia

MICROSTRIP
TRANSMISSION
LINE

Analog Devices

Coaxial Cable

Specification:

Impedance: 53Ω
Capacitance: $83 \mathrm{pF} / \mathrm{m}$
Conductor: Bare Copper Wire ($\mathbf{1} \mathbf{1} \mathbf{1 . 0 2 m m}$)

Signal voltage between central conductor and braid shield

Shield reduces external dipole radiation (and response to RF interference)

Experimental Setup

Wavetek 81

Modeling a Transmission Line

Model as distributed network rather than lumped components

Ideal line has inductance / capacitance per unit length (lossless)

Real lines have finite conductance $G=\frac{1}{R}$ between conductors (i.e. loss)

Pulses in Transmission Lines

The Telegrapher's Equations

Distributed capacitance
$(C d x) V=-d q$
$(C d x) \frac{\partial V}{\partial t}=-\frac{\partial q}{\partial t}=-I$
$C \frac{\partial V}{\partial t}=-\frac{\partial I}{\partial x}$
Distributed inductance

$$
\begin{aligned}
& d V=-(L d x) \frac{\partial I}{\partial t} \\
& \frac{\partial V}{\partial \boldsymbol{x}}=-\boldsymbol{L} \frac{\partial I}{\partial \boldsymbol{t}}
\end{aligned}
$$

The Wave Equation

Distributed capacitance

$$
\begin{gathered}
\mathrm{C} \frac{\partial V}{\partial t}=-\frac{\partial I}{\partial x} \\
\frac{\partial}{\partial t} \\
\frac{\partial^{2} I}{\partial x \partial t}=-\mathrm{C} \frac{\partial^{2} V}{\partial t^{2}}
\end{gathered}
$$

Distributed inductance

$$
\frac{\partial V}{\partial x}=-L \frac{\partial I}{\partial t}
$$

$\frac{\partial^{2} V}{\partial x^{2}}=-L \frac{\partial^{2} I}{\partial x \partial t}$

Combining

$$
\frac{\partial^{2} V}{\partial x^{2}}=\operatorname{LC} \frac{\partial^{2} V}{\partial t^{2}} \quad \frac{\partial^{2} I}{\partial x^{2}}=\operatorname{LC} \frac{\partial^{2} I}{\partial t^{2}}
$$

Voltage and Current Waves

$$
\frac{\partial^{2} V}{\partial x^{2}}=\operatorname{LC} \frac{\partial^{2} V}{\partial t^{2}} \quad \frac{\partial^{2} I}{\partial x^{2}}=\operatorname{LC} \frac{\partial^{2} I}{\partial t^{2}}
$$

Substitute $V(x, t), \mathrm{I}(x, t)$ into...

$$
\mathrm{C} \frac{\partial V}{\partial t}=-\frac{\partial I}{\partial x} \quad \frac{\partial V}{\partial x}=-L \frac{\partial I}{\partial t}
$$

... to find two key consequences:

$$
\text { 1. } v=\frac{1}{\sqrt{L C}}
$$

Speed of wave propagation
2.

$$
Z_{k} \equiv \frac{V(x, t)}{I(x, t)}=\sqrt{\frac{L}{C}}
$$

Characteristic impedance of line

Characteristic Impedance

$C=$ capacitance per unit length (F / m)
$L=$ inductance per unit length (H / m)

$$
\begin{gathered}
\varepsilon_{0}=8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m} \\
\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m} \\
\varepsilon_{0} \mu_{0}=c^{2}
\end{gathered}
$$

$$
\mathrm{C}=\frac{2 \pi \varepsilon_{0} \varepsilon_{\mathrm{r}}}{\ln \left(\frac{\mathrm{D}}{\mathrm{~d}}\right)} \quad(\mathrm{F} / \mathrm{m})
$$

$$
L=\frac{\mu_{0} \mu_{r}}{2 \pi} \ln \left(\frac{D}{d}\right)(\mathrm{H} / \mathrm{m})
$$

- , $\begin{aligned} & \varepsilon_{r}-\text { dielectric permittivity } \\ & \mu_{r} \text {-magnetic permeability } \approx 1\end{aligned}$

Finally for coaxial cable: $Z_{k}=\frac{138}{\sqrt{\varepsilon_{r}}} \log _{10}\left(\frac{D}{d}\right)($ Ohms $)$

Wave Propagation Speed

$$
v=\frac{1}{\sqrt{L C}}
$$

$$
\mathrm{C}=\frac{2 \pi \varepsilon_{0} \varepsilon_{\mathrm{r}}}{\ln \left(\frac{\mathbf{D}}{\mathbf{d}}\right)} \quad L=\frac{\mu_{0} \mu_{r}}{2 \pi} \ln \left(\frac{D}{d}\right)
$$

$$
\begin{gathered}
\varepsilon_{0}=8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m} \\
\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m} \\
\varepsilon_{0} \mu_{0}=c^{2}
\end{gathered}
$$

$$
v=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{\mu_{0} \mu_{r} \varepsilon_{0} \varepsilon_{r}}}=\frac{c}{\sqrt{\mu_{r} \varepsilon_{r}}} \approx \frac{c}{\sqrt{\varepsilon_{r}}}
$$

The delay time of a signal is $\tau=\frac{1}{v}(\mathrm{~s} / \mathrm{m}) \approx 3.336 \sqrt{\varepsilon_{r}} \mathrm{~ns} / \mathrm{m}$
Inner insulation material: Polyethylene
For polyethylene below $1 \mathrm{GHz}, \varepsilon_{r} \approx 2.25$
RG-8/U RG58U

Nominal impedance: 52 ohm Delay time: $\sim 5 \mathrm{~ns} / \mathrm{m}$ (speed $\sim 2 / 3 \mathrm{c}$)

Reflection in Transmission Lines

Any wave will be (partially) reflected when it reaches a change in impedance

Reflected wave

$$
\begin{array}{ll}
V(x, t)=V_{0} \sin \omega\left(t-\frac{x}{v}\right) & V_{r}(x, t)=V_{r} \sin \omega\left(t+\frac{x}{v}\right) \\
\mathrm{I}(x, t)=I_{0} \sin \omega\left(t-\frac{x}{v}\right) & \mathrm{I}_{\mathrm{r}}(x, t)=I_{r} \sin \omega\left(t+\frac{x}{v}\right) \\
V(x, t)=Z_{k} I(x, t) & V_{r}(x, t)=-Z_{k} I_{r}(x, t)
\end{array}
$$

At Load
$V(t)=Z_{L} I(t)$

Reflection in Transmission Lines

$$
\begin{aligned}
& \text { At Load } \\
& V=Z_{L} I
\end{aligned}
$$

Anywhere in Transmission Line

$$
\begin{aligned}
V_{i} & =Z_{k} I_{i} \\
V_{r} & =-Z_{k} I_{r}
\end{aligned}
$$

Match at the boundary

$$
V=V_{r}+V_{i}
$$

$$
I=I_{r}+I_{i}=\frac{V_{i}}{Z_{k}}-\frac{V_{r}}{Z_{k}}
$$

$$
\frac{V_{i}+V_{r}}{V_{i}-V_{r}}=\frac{Z_{L}}{Z_{k}} \quad \text { or } \quad V_{r}=\frac{Z_{L}-Z_{k}}{Z_{L}+Z_{k}} V_{i}
$$

Reflection from an Open Transmission Line

$$
\frac{V_{i}+V_{r}}{V_{i}-V_{r}}=\frac{Z_{L}}{Z_{k}} \quad \text { or } \quad V_{r}=\frac{Z_{L}-Z_{k}}{Z_{L}+Z_{k}} V_{i}
$$

Open line: $\mathbb{Z}_{L}=\infty \Rightarrow V_{r}=V_{i}$, and voltage at load $V_{L}=V_{i}+V_{r}=2 V_{i}$

Transmission Line Losses

Why is the reflected pulse smaller?

	Attenuation (dB per 100 ft)				
MHz	30	50	100	146	150
RG-58U	2.5	4.1	5.3	6.1	6.1

Experiment: RG58U

Cable characterized by attenuation per unit length This is slowly frequency dependent!

Reminder: Units of Ratio

We can compare the relative strength of two signals by

Alexander Graham Bell (1847-1922) taking the logarithm (base-10) of the ratio of their powers. This (rarely used) unit was named a bel, after A.G. Bell.

We more commonly use the decibel $(\mathrm{dB}), 1 / 10^{\text {th }}$ of a bel

$$
\begin{array}{ll}
L[d B]=10 \log _{10}\left(\frac{P_{1}}{P_{2}}\right) & \text { Power ratio } \\
L[d B]=20 \log _{10}\left(\frac{V_{1}}{V_{2}}\right) & \text { Voltage ratio }
\end{array}
$$

or current, field, ...

Ex: $-3 \mathrm{~dB}=1 / 2$ power; $-20 \mathrm{~dB}=1 / 100$ power ($1 / 10$ voltage)
Related units: $\mathbf{d B m}=\mathrm{dB}$ relative to 1 mW (absolute unit)
Neper (Np) = like a bel, but natural log (In)

Transmission Line Losses

Experiment: RG 58U

In our case:

$$
\operatorname{Attn}(200 f t)=20 \log \left(\frac{4.18}{3.54}\right) \approx 1.46 \mathrm{~dB}
$$

Where does it come from?

Finite conductance

Losses in Different Cables

$$
\operatorname{Attn}(200 f t)=20 \log \left(\frac{4.18}{3.54}\right) \approx 1.46 d B
$$

Core $\varnothing=0.81 \mathrm{~mm}$

Dielectric $\varnothing=2.9 \mathrm{~mm}$

$$
\operatorname{Attn}(200 f t)=20 \log \left(\frac{3.932}{3.78}\right) \approx 0.335 d B
$$

Frequency-Dependent Transmission

Why is the reflected pulse distorted relative to the incident pulse?

1. Loss: Attenuation is frequency-dependent
2. Dispersion: Delay (i.e. speed) depends on frequency

Frequency-Dependent Loss Example

Reflection from a Resistive Load

Shorted line

$$
R_{L}=0 \Rightarrow V_{\mathrm{r}}=-\mathrm{V}_{\mathrm{i}}
$$

Reflection from a Resistive Load

$$
\frac{V_{i}+V_{r}}{V_{i}-V_{r}}=\frac{Z_{L}}{Z_{k}} \quad \text { or } \quad V_{r}=\frac{Z_{L}-Z_{k}}{Z_{L}+Z_{k}} V_{i}
$$

Matched Impedance

$$
R_{L}=Z_{k} \Rightarrow \mathrm{~V}_{\mathrm{r}}=0
$$

time (ns)

time (ns)

Thevenin's Theorem: Simplifying Networks

Hermann Ludwig Ferdinand von Helmholtz (1821-1894)

Any combination of voltage sources and resistive/reactive impedances with two terminals ("linear one-port network") can be replaced by an equivalent single voltage source and series impedance.

Léon Charles Thévenin (1857-1926)
N.B. replacement is exactly equivalent from the load's point of view, but e.g. internal power dissipation in the equivalent network may differ

Thevenin's Theorem and Transmission Lines

$$
\begin{aligned}
& \text { Conditions at the Load } \\
& V=V_{r}+V_{i}=I R_{L} \\
& I=I_{r}+I_{i}=\frac{V_{i}}{Z_{k}}-\frac{V_{r}}{Z_{k}}
\end{aligned}
$$

$$
I=\frac{2 V_{i}}{Z_{L}+Z_{k}}
$$

From this equivalent circuit we can find the maximum possible power delivered to the load:

$$
\begin{aligned}
& P=I^{2} R_{L}=\frac{\left(2 V_{i}\right)^{2}}{\left(R_{L}+Z_{k}\right)^{2}} R_{L} \\
& P=\frac{\left(2 V_{i}\right)^{2}}{R_{L}\left(1+\left(\frac{Z_{k}}{R_{L}}\right)\right)^{2}}
\end{aligned}
$$

Matched Impedance

$$
P=P_{\max } \text { if } R_{L}=Z_{k}
$$

(i.e. no reflection!)

Thevenin's Theorem - Experiment

This experiment works best when performed with RG-8U cable due to its lower attenuation

When $R_{L}=\infty$ (open line) the pulse amplitude at line's end is expected to be $2 V_{i}$, where V_{i} is the amplitude of the incident pulse

Reflection from a Capacitive Load

$$
I=\frac{2 V_{i}}{Z_{L}+Z_{k}}
$$

$$
\begin{gathered}
\tau=Z_{k} C \\
C=\frac{\tau}{Z_{k}} \approx 3.2 n F
\end{gathered}
$$

$$
V_{L}=\left[1-e^{-t / \tau}\right]-
$$

$$
V_{L}=2 V_{i}\left[1-e^{-T_{1} / \tau}\right]\left[1-e^{-\left(t-T_{1}\right) / \tau}\right]
$$

Reflection from an Inductive Load

$$
I=\frac{2 V_{i}}{Z_{L}+Z_{k}}
$$

$$
\begin{aligned}
& 2 V_{i}=I Z_{k}-L \frac{d I}{d t} \\
& I=I_{0}\left[1-e^{-t / \tau}\right]
\end{aligned}
$$

$$
\begin{aligned}
\tau & =\frac{L}{Z_{k}} \approx 50 n s \\
L & =\tau Z_{k} \approx 2.5 \mu H
\end{aligned}
$$

Reflection from an Inductive Load

$$
I=\frac{2 V_{i}}{Z_{L}+Z_{k}}
$$

$$
\begin{aligned}
& 2 V_{i}=I Z_{k}-L \frac{d I}{d t} \\
& I=I_{0}\left[1-e^{-t / \tau}\right]
\end{aligned}
$$

Appendix \#1: Exporting graphs from Origin

Appendix \#2: Some Reminders

1. Reports should be uploaded only to the proper folder for your activity and section

- For example, folder Frequency domain analysis_L1 should only be used by students from section L1
- Submit only one copy (no need to submit e.g. both Word and PDF)
- I recommend the following file name style:

L1_lab3_LastName

2. Origin template for this week's lab:

engr-file-03\phyinst\APL Courses\PHYCS401\Common\Origin templates\Transmission line\Time trace.otp

Appendix \#3: Error Propagation

Suppose that I'm interested in a derived quantity $y=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
I've made lab measurements with errors: $x_{j} \pm \delta x_{j}$
What is the error on y?

$$
\begin{aligned}
& (\Delta y)^{2}=\left(\Delta f\left(x_{i}, \Delta x_{i}\right)\right)^{2}=\sum_{i=1}^{n}\left[\frac{\partial f}{\partial x_{i}}\left(x_{i}\right)\right]^{2} \cdot \Delta x_{i}^{2} \\
& \text { Intuition: If } y \text { depends strongly (weakly) on } x_{i} \text {, then an error in } \\
& x_{i} \text { will have a large (small) effect on our estimate of } y
\end{aligned}
$$

Technical aside: This assumes no correlations among errors in the various x's. If this isn't true, we must complicate this formula with a covariance matrix.

Appendix \#3: Error Propagation - Example

Derive the resonance frequency f from measured inductance and capacitance

$$
\begin{gathered}
f(L, C)=\frac{1}{2 \pi \sqrt{L C}} \\
L=10 \pm 1 \mathrm{mH} ; C=10 \pm 2 \mu F
\end{gathered}
$$

$$
(\Delta f)^{2}=(\Delta f(L, C, \Delta L, \Delta C))^{2}=\left[\frac{\partial f}{\partial L}\right]^{2} \cdot \Delta L^{2}+\left[\frac{\partial f}{\partial C}\right]^{2} \cdot \Delta C^{2}
$$

$$
\begin{aligned}
& \frac{\partial f}{\partial L}=\frac{-1}{4 \pi} C^{-\frac{1}{2}} L^{-\frac{3}{2}} \\
& \frac{\partial f}{\partial C}=\frac{-1}{4 \pi} L^{-\frac{1}{2}} C^{-\frac{3}{2}}
\end{aligned}
$$

Results:
$f(L, C)=503.29212104487 \ldots \mathrm{~Hz}$
$\Delta f=56.26977 \ldots \mathrm{~Hz}$
$f(L, C)=503 \pm 56 \mathrm{~Hz}$

Appendix \#3: Error Propagation - Practicalities

$$
L=10 \pm 1 \mathrm{mH} ; \quad C=10 \pm 2 \mu F \quad \text { Where are these numbers coming from? }
$$

1. Commercial resistors, capacitors, inductors, ... have quoted tolerances (use if you haven't measured!)

2. Measure components with standard equipment, use equipment accuracy

SENCORE "Z" meter model LC53

Capacitance measurement accuracy $\pm 5 \%$ Inductance measurement accuracy $\pm 2 \%$

Agilent E4980A Precision LCR Meter Basic accuracy $\pm 0.05 \%$

Appendix \#4: Nonlinear Fitting

Fitting is a minimization problem: what choice of parameter values minimizes some cost function that expresses how far the fit function is from the data?

- Data: ordered pairs $\left(x_{i}, y_{i}\right)$, often in the form of an $N \times 2$ matrix
- Independent variable x_{i}, e.g. frequency, time, etc.
- Dependent variable y_{i}, e.g. signal magnitude
- Parameterized function: $y=f(x ; \beta)$, which takes some set of parameters β

Our usual cost function is the sum of squared deviations:

$$
S(\beta)=\sum_{i=1}^{N}\left[f\left(x_{i} ; \beta\right)-y_{i}\right]^{2}
$$

$\chi^{2}=\sum_{i=1}^{N} \frac{\left[f\left(x_{i} ; \beta\right)-y_{i}\right]^{2}}{\sigma_{i}^{2}}$ is further normalized by the r.m.s. error, which doesn't matter for fitting

Origins uses the Levenberg-Marquardt algorithm for nonlinear fitting, which is optimized for quadratic cost functions like this one and requires a starting guess. In some cases $\beta=(1,1, \ldots 1)$ works, but a more reasonable guess is often required

Appendix \#5: Unknown Load Fitting

- Transmission line: unknown load simulation

Location:

engr-file-03\PHYINST\APL Courses\PHYCS401\Lab Software And Manuals\LabSoftware\Transmission lines

Appendix \#5: Unknown Load Fitting

- Transmission line: unknown load simulation

Location:

engr-file-03\PHYINST\APL Courses\PHYCS401\Lab Software And Manuals\LabSoftware\Transmission lines

