Working with Histogram Graph. Millikan Oil Drop Experiment.

1. After calculating the charges plug in the data in Origin worksheet. Data could be in electrical charge units or as a numbers of elementary charges. Try to use maximum of available data points.

郒 File Edit View Plot Column Worksheet Analysis Statistics

2. I would recommend you to check if the your data set contains some "nonrealistic" numbers of elementary charges ($n>10$) and remove them from worksheet. In Origin you can sort data in column and then remove the "bad" data

3. For plotting your data you can use the prepared template: HIST.otp, located in:
engr-file-03\PHYINST \backslash APL Courses\PHYCS401\Common\Origin templates\Oil drop experiment

4. Plot your data as a histogram

5. Template is saved with bin size as 0.1 but you can change it by clicking on the graph

6．Now you need to add an X－Y plot of Counts vs Bin center． Right click on the graph and＂Go to Bin Worksheet＂

7．Now the Bin worksheet is unhidden and you can use for adding the plot on the graph

017\Lectures\Lecture\＃6．Error analysis．Data fitting\F17data（EK）＊［［Book1＊］					
；is Statistics Image Tools Format Window Help					
－$\dagger \times$		A（X）易	B（Y畕	C （Y）早	D（Y）早
	Long Name	Bin Centers	Counts	Cumulative Sum	Cumulative Percent
	Units				
	Comments	Bins	Bins	Bins	Bins
	$\mathrm{F}(\mathrm{x})=$				
Short N	1	0.05	0	0	0
	2	0.15	1	1	0.08071
Graph5 Book1	3	0.25	4	5	0.40355
	4	0.35	5	10	0.8071
	5	0.45	2	12	0.96852
	6	0.55	8	20	1.61421
	7	0.65	21	41	3.30912
		ก75	62	10.4	－20207

And new plot will appear on the graph

8. Now you need to do the multipeak fitting using Gaussian model as a peak shape

: 1 Teaching\P401\Fall 2017\Lectures\Lecture\#6. Error analysis. Data fitting\F17data(EK) * - [Graph5 *]

9. Click on all expected peaks and the on "Open NLFit" and preform the fitting
 \#1

10. The positions of the peaks and uncertainties calculated by fitting procedure you can find from the Table of the fitting results. These uncertainties reflect only random errors and don't take in account the systematic errors. To calculate the systematic error you need to use the error propagation equation - see the Lecture notes.

	A	B1	B2	B3	B4
1	Model	Gauss			
2	Equation	$\mathrm{y}=\mathrm{y} 0+\left(\mathrm{A} /\left(\mathrm{w}^{*} \mathrm{sqrt}(\mathrm{pi} / 2)\right)\right)^{*} \exp \left(-2 *((\mathrm{x}-\mathrm{xc}) / \mathrm{w})^{\wedge} 2\right)$			
3	Plot	Peak1(Counts)	Peak2(Counts)	Peak3(Counts)	Peak4(Counts)
4	y0	4.13576 ± 1.44012	4.13576 ± 1.44012	4.13576 ± 1.44012	4.13576 ± 1.44012
5	xc	0.88153 ± 0.00716	1.87811 ± 0.00995	2.83795 ± 0.01735	3.84661 ± 0.02824
${ }^{6}$	w	0.26133 ± 0.01546	0.31295 ± 0.02148	0.45524 ± 0.03783	0.4371 ± 0.06225
7	A	29.85859 ± 1.73382	28.21299 ± 1.92811	28.6116 ± 2.43848	16.53804 ± 2.41375
${ }^{8}$	Reduced Chi-Sq	28.87454			
9	R-Square(COD)	0.96067			
10	Adj. R-Square	0.94791			

11. For each peak to calculate the statistical error you need to take the standard deviation for corresponding peak $\left(w_{i}\right)$ and divide it by the square root of the number of data points corresponding this peak ($\sqrt{N_{i}}$). N_{i} cold be calculated from area parameters (Ai) for normal distribution assuming that $\sum_{i} A_{i}$ corresponds total number of points N and the fraction corresponding each peak will be proportional to A_{i} :

