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Chapter 1

Basics

1.1 Goniometric functions

For the goniometric ratios for a point p on the unit circle holds:
cos(¢p) =z, , sin(¢) =y, , tan(¢)=
sin?(z) 4 cos?(z) = 1 and cos~2(z) = 1 + tan?(z).

cos(a £ b) = cos(a) cos(b) F sin(a) sin(b) , sin(a £+ b) = sin(a) cos(b) £ cos(a) sin(b)
tan(a) + tan(b)

tan(a £b) = T @ tan(b)
The sum formulas are:
sin(p) +sin(g) = 2sin(z3(p+ q)) cos(3(p — q))
sin(p) —sin(q) = 2cos(5(p +q))sin(3(p — q))
cos(p) +cos(q) = 2cos(5(p+q))cos(5(p — q))
cos(p) —cos(q) = —2sin(5(p+q))sin(5(p — q))
From these equations can be derived that
2cos?(z) =1+ cos(2z) ,  2sin®(z) =1 — cos(2z)
sin(m — ) =sin(z) ,  cos(m —x) = — cos(z)
sin(3m — x) =cos(z) ,  cos(3m — x) = sin(z)

Conclusions from equalities:

sin(x) = sin(a) = x=ax2krorz=(r—a)*t2kr, k€N
cos(z) = cos(a) = x=a=+2kmor x = —a+2knr

tan(z) = tan(a) = r=axkrand x # g +km

The following relations exist between the inverse goniometric functions:

1
arctan(z) = arcsin (;El> = arccos () , sin(arccos(x)) = /1 — 22
e+

2 +1
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1.2 Hyperbolic functions
The hyperbolic functions are defined by:

e? —e” 7 e’ +e 7 sinh(x)
2 )

sinh(z) =

From this follows that cosh?(z) — sinh?(z) = 1. Further holds:

arsinh(z) = In|x + Va2 4+ 1| , arcosh(z) = arsinh(y/ 22 — 1)

1.3 Calculus
The derivative of a function is defined as:

& _ Sk~ @)

dr h—0 h

Derivatives obey the following algebraic rules:

xT

dx — xd
Y

y2

For the derivative of the inverse function f™(y), defined by f™(f(z)) = x, holds at point P = (z, f(z)):

(75, (%),

Chain rule: if f = f(g(x)), then holds

g df dg

de d79 dx
Further, for the derivatives of products of functions holds:

n

o™ =3" <Z> k) g0

k=0

For the primitive function F(x) holds: F'(z) = f(x). An overview of derivatives and primitives is:
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y=f(z) | dy/dz = f'(z) [ f(z)dx
az™ anz"™ ! a(n+ 1)~ tgntl
1/z —z72 In |z|
a 0 azx
a: a® h;(a) a®/ lil(a)
@log(x) (zln(a))~! (zln(z) — z)/1n(a)
In(z) 1/x zln(z) —
sin(x) cos(x) — cos(z)
cos(x) —sin(z) sin(x)
tan(z) cos2(x) —In | cos(z)|
sin™!(xz) —sin"%(z) cos(x) In | tan(3z)|
sinh(x) cosh(x) cosh(x)
cosh(x) sinh(x) sinh(x)
arcsin(z) 1/v/1— a2 xarcsin(z) + v1 — z2
arccos(z) —1/v1 —a? xarccos(x) — V1 — a2
arctan(z) (1+a2%)71! zarctan(z) — £ In(1 + 2?)
(a4 222 | —z(a+2?)73/? X In |z + Va + 22|
(a® — 2?)~t 2z(a? + 2%)7?2 %ln|(a+x)/(a—x)|

1 \23/2
The curvature p of a curve is given by: p = (—’_(yﬂ)|)
Y
f(x)

/!
The theorem of De ’1 Hépital: if f(a) =0 and g(a) = 0, then is lim “—— = lim ()
v—a g(z)  a—a g'(z)

1.4 Limits

s T —1 t z
T L e S .1 ) I iy oSV S (1+§) — o
z—0 x z—0 x z—0 €T k—0 T—00 x
InP 1 P
lmzeIn(m) =0 , lim @ _o g BEFD i T g s ] > 1.
z]0 z—oo0 ® z—0 T z—o00 q¥
lim (al/“” - 1) =1In(a) , lim aresin(z) _ 1, lim Jz=1
x—0 r—0 x Tr—00

1.5 Complex numbers and quaternions

1.5.1 Complex numbers

The complex number z = a + bi with ¢ and b € IR.

a is the real part, b the imaginary part of z.
|z| = Va2 + b2. By definition holds: i?> = —1. Every complex number can be written as z = |z| exp(iyp),
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with tan(p) = b/a. The complex conjugate of z is defined as Z = z* := a — bi. Further holds:

(a+bi)(c+di) = (ac—0bd)+i(ad+ bc)
(a+bi)+ (c+di) = a+c+i(b+d)
a+bi  (ac+ bd)+i(bc — ad)
c+di 2+ d?
Goniometric functions can be written as complex exponents:
. 1, i
sin(xz) = Z(e” —e™')
cos(z) = %(e“c +e7)

From this follows that cos(iz) = cosh(z) and sin(iz) = isinh(x). Further follows from this that
et = cos(z) £ isin(z), so e* # 0Vz. Also the theorem of De Moivre follows from this:
(cos(p) + isin(p))™ = cos(np) + isin(nep).

Products and quotients of complex numbers can be written as:

2122 = |z - [2(cos(pr + @2) +isin(er + p2))
z z .
= = Lll(um(@l—-¢2)+-2$n(¢1—-@2»
zZ9 |22|
The following can be derived:
|21 + 22| < |z + [z2] |21 — 22| 2| |21] = |22] |

And from z = rexp(if) follows: In(z) = In(r) + i, In(z) = In(2) £ 2nmi.

1.5.2 Quaternions

Quaternions are defined as: z = a + bi + ¢j + dk, with a,b,c,d € IR and i?> = j2 = k*> = —1. The products
of i, j, k with each other are given by ij = —ji =k, jk = —kj =i and ki = —ik = j.

1.6 Geometry
1.6.1 Triangles

The sine rule is:
a b c

sinfa) _ sin(B)  sin(9)
Here, « is the angle opposite to a, 3 is opposite to b and v opposite to c. The cosine rule is: a? =
b% + ¢ — 2bccos(a). For each triangle holds: o + 8+ v = 180°.

Further holds:

s(a+p8) a+bd

tan(3(a—3)) a—b
The surface of a triangle is given by Labsin(y) = 2ah, = \/s(s — a)(s — b)(s — ¢) with h, the perpendicular
onaands=3i(a+b+c).
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1.6.2 Curves

Cycloid: if a circle with radius a rolls along a straight line, the trajectory of a point on this circle has the
following parameter equation:

x=a(t+sin(t)) , y=a(l+ cos(t))

Epicycloid: if a small circle with radius a rolls along a big circle with radius R, the trajectory of a point
on the small circle has the following parameter equation:

x = asin (Mt> + (R+a)sin(t) , y=acos (R:at> + (R + a) cos(t)
a

Hypocycloid: if a small circle with radius a rolls inside a big circle with radius R, the trajectory of a
point on the small circle has the following parameter equation:

z = asin <R; at) +(R—a)sin(t) , y=—acos <Ra_at> + (R — a) cos(t)

A hypocycloid with a = R is called a cardioid. It has the following parameterequation in polar coordinates:
r = 2a[l — cos(p)].

1.7 Vectors

The inner product is defined by: @-b = Z aib; = |@| - |b]| cos(p)
i

where ¢ is the angle between @ and b. The external product is in IR? defined by:

ayb, — a,b, €r €y €
axb= a,by — azb, =|a; ay a
azby — ayby by b, b,

Further holds: |@ x b| = |@| - |b|sin(p), and @ x (b x &) = (@-&)b— (@-b)C.

1.8 Series

1.8.1 Expansion

The Binomium of Newton is:

here " ._ni!
v k)T Kk

n n
By subtracting the series > 7* and 7 }_ 7* one finds:
k=0 k=0

1—pntl

n
k
ZOT 1-r
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- 1
and for |r| < 1 this gives the geometric series: Zrk = .
1—r
k=0
N
The arithmetic series is given by: Z(a +nV)=a(N+1)+iN(N+1)V.
n=0

The expansion of a function around the point a is given by the Taylor series:

(2 - a)? (= )"

5@+t = [T (0) + R

f(@) = fla)+ (z —a)f'(a) +
where the remainder is given by:
Ra(h) = (1= 6)" 2 £ 01

and is subject to:

mhntl Mpntt
a1 = )= o
From this one can deduce that -
1—-x)*= Z (2):5"
n=0

One can derive that:

=1 s =1 T =1 76
2T XwTw 2w
21 N A R N G O K
Yo =inn+1)@2n+1), Y =1 > —— =In(2)
k=1 n=1 n=1
SIS U SN N S s I
—4n? -1 27 L (2n-1)2 87 Z(2n-1F 967 ‘= (2n-1)° 32

1.8.2 Convergence and divergence of series

If > |uy| converges, > w, also converges.
n n

If lim wu, # 0 then > u, is divergent.
n—oo n

An alternating series of which the absolute values of the terms drop monotonously to 0 is convergent
(Leibniz).

If fpoo f(z)dz < oo, then 3 f,, is convergent.
n
If w, > 0 Vn then is Y u, convergent if > In(u, + 1) is convergent.

Cn+1

1
If w,, = c,a™ the radius of convergence p of > u, is given by: — = lim {/|c,| = lim
n p n—oo n—0o0 n
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o0
The series Z - is convergent if p > 1 and divergent if p < 1.
n

n=1

If: lim 2 — p, than the following is true: if p > 0 than > w, and ) v, are both divergent or both

n—00 Uy

convergent, if p = 0 holds: if )" v, is convergent, than ) u, is also convergent.
n n

If L is defined by: L = lim 3/|n,|, or by: L = lim Un+l
n—oo

n—oo n

, then is Y u, divergent if L > 1 and
n

convergent if L < 1.

1.8.3 Convergence and divergence of functions
f(z) is continuous in z = a only if the upper - and lower limit are equal: li%n fz) = 1ifn f(z). This is
Trla rla

written as: f(a”) = f(a™).

If f(x) is continuous in a and: li%n fl(z) = 1iIn f(x), than f(x) is differentiable in z = a.

We define: ||f|lw = sup(|f(z)| | € W), and lim f,(x) = f(x). Than holds: {f,} is uniform convergent
it Tim [|f, — /]| = 0, or: Y(= > 0)3(N)¥(n > N)[lfu — f]| < &.

Weierstrass’ test: if > ||uy,||w is convergent, than " w, is uniform convergent.

- b
We define S(z) = Z up(x) and F(y) = /f(x, y)dzx := F. Than it can be proved that:
n=N @

H Theorem \ For \ Demands on W \ Than holds on W H
TOWS fn continuous, f is continuous
{fn} uniform convergent
C series S(z) uniform convergent, S is continuous
U, continuous
integral | f is continuous F' is continuous
rOwWS fn can be integrated, fn can be integrated,
{fn} uniform convergent [ fx)dz = lim [ fdx
n—o0
I series S(x) is uniform convergent, S can be integrated, [ Sdz =3 [u,dx
u, can be integrated
integral | f is continuous [ Fdy = [ f(z,y)dzdy
rows {fa} €C7L {f2} unif.conv — ¢ | f' = ¢(z)
D series un, €C71 Sy, conv; Youl, we. | S'(z) = ul ()
integral | 0f/Jy continuous Fy,= [ fy(z,y)dx
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1.9 Products and quotients

For a,b, c,d € IR holds:

The distributive property: (a + b)(c+ d) = ac + ad + bc + bd

The associative property: a(bc) = b(ac) = c(ab) and a(b+ ¢) = ab+ ac
The commutative property: a +b =06+ a, ab = ba.

Further holds:

n
a2" — b2n _ a2n—1 4+ a2n—2b + a2n—3b2 4+t b2n—1 7 a2n+1 — b2n+1 _ Za2n—kb2/€
atb a+b =
ad + b3

(axb)(a®>+ab+b0?)=a®+b®, (a+b)(a—b)=a®+b, = a® F ba + b?

a+b

1.10 Logarithms

Definition: “log(z) = b < a® = x. For logarithms with base e one writes In(x).

Rules: log(z™) = nlog(z), log(a) + log(b) = log(ab), log(a) — log(b) = log(a/b).

1.11 Polynomials

Equations of the type
n
Z akxk =0
k=0

have n roots which may be equal to each other. Each polynomial p(z) of order n > 1 has at least one root
in €. If all a; € IR holds: when x = p with p € € a root, than p* is also a root. Polynomials up to and
including order 4 have a general analytical solution, for polynomials with order > 5 there does not exist a
general analytical solution.

For a,b,c € IR and a # 0 holds: the 2nd order equation ax? + bx + ¢ = 0 has the general solution:
v —b+ Vb2 — dac
N 2a

For a,b,c,d € IR and a # 0 holds: the 3rd order equation ax® + bx? + cx +d = 0 has the general analytical
solution:

B 3ac — b? b
neo= 942K 3a
oy — 2% — _K+3ac—b2_b+i\/§< 3ac—b2>
3 2 18a2K  3a 2 9a2K

. 1/3
9abe — 27da? — 2b3 N V3 V4ac® — 2b? — 18abed + 27a2d2 + 4db3> /

ith K =
W ( 5443 1842
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1.12 Primes

A primeis a number € IN that can only be divided by itself and 1. There are an infinite number of primes.

Proof: suppose that the collection of primes P would be finite, than construct the number ¢ =1+ [] p,
peP

than holds ¢ = 1(p) and so @ cannot be written as a product of primes from P. This is a contradiction.

If 7r(x) is the number of primes < z, than holds:

lim m(z) =1 and lim ;r(m) =1
w5 7/ In(z) T
5 In(t)

For each N > 2 there is a prime between N and 2N.
The numbers F), := 2% 4+ 1 with k € IN are called Fermat numbers. Many Fermat numbers are prime.

The numbers M, := 2¥—1 are called Mersenne numbers. They occur when one searches for perfect numbers,
which are numbers n € IN which are the sum of their different dividers, for example 6 = 14+24-3. There are
23 Mersenne numbers for k& < 12000 which are prime: for & € {2,3,5,7,13,17,19, 31, 61,89, 107,127, 521,
607,1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213}.

To check if a given number n is prime one can use a sieve method. The first known sieve method was
developed by Eratosthenes. A faster method for large numbers are the 4 Fermat tests, who don’t prove
that a number is prime but give a large probability.

1. Take the first 4 primes: b= {2,3,5,7},
2. Take w(b) = b"~! mod n, for each b,

3. If w =1 for each b, then n is probably prime. For each other value of w, n is certainly not prime.
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Calculus

3.1 Integrals

3.1.1 Arithmetic rules

The primitive function F(x) of f(z) obeys the rule F'(z) = f(x). With F(x) the primitive of f(x) holds
for the definite integral

If u = f(z) holds:
b f(b)

[otr@nir@) = [ g
a f(a)
Partial integration: with F' and G the primitives of f and g holds:

[ 161 9@t = @16t - [ 6L

A derivative can be brought under the intergral sign (see section for the required conditions):

z=h(y)
_ 0f(z,y) dg(y) dh(y)
- / o] - | gran = st G2 + i) 52

z=g(y) z=g(y)

3.1.2 Arc lengts, surfaces and volumes

The arc length ¢ of a curve y(x) is given by:

/ (&
dx
The arc length ¢ of a parameter curve F'(Z
= / Fds = / (t)|dt

14
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with

/ (7, f)ds = / (&, £(t))dt = / (v1dz + vady + vsdz)

The surface A of a solid of revolution is:

dean [t (2

The volume V of a solid of revolution is:
V=nm / f2(x)dx

3.1.3 Separation of quotients

Every rational function P(x)/Q(z) where P and @ are polynomials can be written as a linear combination
of functions of the type (z — a)* with k € Z, and of functions of the type

__prta
(= aP+ 2y

with b > 0 and n € IN. So:

Recurrent relation: for n # 0 holds:

/ dz _ 1 x n 2n —1 / dx
(x2 4+ 1)+ 2n (22 + 1)m 2n (z2+1)»

3.1.4 Special functions

Elliptic functions

Elliptic functions can be written as a power series as follows:

—  (2n—1)!
_ k2qi — 2n ;2
1 — k2sin’(z) = Ez 52 — 1)k sin“"(x)
1 — (2n — 1!
=1+ E ( n2 ”) k2" sin" ()
1 — k2sin’(x) e OO

with n!l = n(n — 2)IL
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The Gamma function
The gamma function I'(y) is defined by:

oo

I(y) = /efmxyfldsc

0

One can derive that T'(y + 1) = yI'(y) = y!. This is a way to define faculties for non-integers. Further one
can derive that

L(n+3)= 2—\/:?(211 — 1! and TM(y) = /e_”“'avy_1 In"(z)dz
0

The Beta function

The betafunction 3(p, q) is defined by:

1
Bp.a)= [ "1 —2) da
/

with p and ¢ > 0. The beta and gamma functions are related by the following equation:

_T(pl(q)
B(p,q) = W

The Delta function

The delta function é(x) is an infinitely thin peak function with surface 1. It can be defined by:

§(z) = lim P(e,z) with P(e,z) =

e—0 —  when |z| <¢

{ 0 for |z| >¢
2e

Some properties are:
oo

/ Sx)dw =1 | 7F(a:)5(a:)dx — F(0)

3.1.5 Goniometric integrals

When solving goniometric integrals it can be useful to change variables. The following holds if one defines
tan(3x) := t:

2dt (@) 1—1¢2 () 2t
r = ——= COS(T) = ——— SIr) = ——=
1427 1427 1+¢t2
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Each integral of the type [ R(z,Vax? + bx + ¢)dz can be converted into one of the types that were treated
in section After this conversion one can substitute in the integrals of the type:

of vVa+l=t+z
cos(
/R(x, V1—a22)dz z =sin(p) ,dx = cos(p)dy of V1—x2=1—tx
1 .
/R(m, vaz—=1)dz x = yda = sin(p) dp of Va2 —1=z—t

cos(p) cos?(p)

/R(x, 224+ Dde : x=tan(p) ,dx =

These definite integrals are easily solved:

w/2
, (n—D(m —1)N /2 when m and n are both even
n m — .
/ cos™ (z) sin™ (z)dz = (m +n)!! 1 in all other cases
0

Some important integrals are:

/ 2 / x2dx / 3da: B 7L4
T 1242 (e* +1)2 15
0 —o0 0

3.2 Functions with more variables

3.2.1 Derivatives

The partial derivative with respect to x of a function f(x,y) is defined by:
<3f> ~ Jim f(@o + h, yo) — (2o, Y0)

ox h—0 h

The directional derivative in the direction of « is defined by:

% _ lr%l f(zo + rcos(a), yo +rr sin(@)) — f(zo,50) _ (Vf, (sin @, cos ) — vlj;lﬁ

When one changes to coordinates f(z(u,v),y(u,v)) holds:
of af ox L of af 8y

ou Oz ou y du
If 2(¢t) and y(t) depend only on one parameter ¢ holds:
of _ Ofdx L of of dy

ot Oz dt Oy dt
The total differential df of a function of 3 variables is given by:

9 4o W gy 1 9L g

i = Oz oy 0z
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So
d 0 of d of d
f_f+fy+f2

de  O0xr  Oydr Ozdx
The tangent in point &y at the surface f(z,y) = 0 is given by the equation f,(Zo)(z—2x0)+ fy(Zo)(y—yo) = 0.
The tangent plane in &y is given by: fy(Zo)(x — z0) + fy(Zo)(y — yo) = z — f(Zo).

3.2.2 Taylor series

A function of two variables can be expanded as follows in a Taylor series:
1 [ o or
f(@o+h,yo + k) = pzz(:) ol <h(‘3x1’ + k(’?gﬂ’) f(zo,y0) + R(n)

with R(n) the residual error and
hﬁ + kﬁ f( b) = i p hmkp—mm
OxP OyP &0 = m dxmPyr—m

3.2.3 Extrema

When f is continuous on a compact boundary V there exists a global maximum and a global minumum
for f on this boundary. A boundary is called compact if it is limited and closed.

Possible extrema of f(x,y) on a boundary V € IR? are:
1. Points on V where f(z,y) is not differentiable,
2. Points where V f=0,

3. If the boundary V is given by ¢(z,y) = 0, than all points where 6f(x,y) + )\ﬁgo(a:,y) = 0 are
possible for extrema. This is the multiplicator method of Lagrange, A is called a multiplicator.

The same as in IR? holds in IR? when the area to be searched is constrained by a compact V, and V is
defined by ¢1(z,y,2) = 0 and pa(z,y,z) = 0 for extrema of f(x,y, z) for points (1) and (2). Point (3) is
rewritten as follows: possible extrema are points where V f(x,y, z) + A1 V1 (2, y, 2) + AaVea(z,y,2) = 0.

3.2.4 The V-operator

In cartesian coordinates (z,y, z) holds:

ﬁ — g"+£"+2“
T ayey 92"
s of.  of,

gradf = axem—l—ayey—kazez
diva = day | Oay | Oa,

8x+8y+8z
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dd — Oa, B Oay \ n oa, B
e = Oy Oz Cx 0z
82f o*f | O*f
2 —— PR PR
Vi = et e T o

In cylindrical coordinates (r, ¢, z) holds:

Oa,\ _, . Oay
oz ) v Ox

v = 25412 -+4§1€
o e 8@ 0z °
_of e 1of s of .
gradf = oty 9% e 9.
.. _ 0Oa, a, 10a,  Oa,
diva = or r Op 0z
curld = 18&2—% e, + Bar_(f?az €, + %
N r Op 0z " 0z or ¢ or
iy _ PF 107 10 o
02 ror  r20g? 022
In spherical coordinates (r, 6, ¢) holds:
ﬁ = 2" + 12" + Li"
T o T 9% T rsing Jp Co
_ 9f,  1of & 1 of
gradf = ar T t r90°° ’I’Sin@%ew
oL Oa, 2a, 1 Oag ag 1 Oa,
diva = or + r r 80 ' rtand + rsinf Oy
o 1 5‘a¢ ap 1 8a9 5 1 5‘ar
curld = (r 00 +rtan9 rsinf 8g0>er+<rsin9 Op
dag ag 1 da, \ _
( or + 96 )
Gy _ Bl oM 1 or 1 oy
o 0r2  ror 12002 r2tanf 00 r2sin? 0 Op?

day
dy

)gz

% _ 104,

r o rop

Oa, Gy
ar> ot

General orthonormal curvilinear coordinates (u,v,w) can be derived from cartesian coordinates by the
transformation Z = Z(u, v, w). The unit vectors are given by:

where the terms h; give normalization to length 1. The differential operators are than given by:

gradf =

diva =

S 1 o%

eu—a%,

iﬁ* + — 1af“
hlc')u" ha

1
hihahs

S 1 o%

GU—E%,

101,

6'1)
hs ow

~ 1 oz

ew—E%

0 0 0
0 (au(hzh?,au) + %(hshwv) + aw(hﬂlzaw))
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o 1 8(h3aw hgav 1 (hlau) B(hgaw) 5
cwld = hghg ( ov B ) hghl ( ow B ou ev +
1 a(hgav _ hlau
hlhz 3u

2, 1 0 hghsaf hshy Of hihs Of
v f a h1h2h3 8u hl 8u +8 hg 811 +8 h3 611)

Some properties of the V-operator are:

div(¢?) = ¢divd + grade - ¥ curl(¢@) = peurld + (gradg) x ¢ curl gradé = 0
div(@ x ¥) = ¥+ (curlid) — @ - (curld)  curl curld = grad dive — V2@ div curld =0
div grad¢ = V2¢ V2§ = (V2v1, V2ug, V203)

Here, ¥ is an arbitrary vectorfield and ¢ an arbitrary scalar field.

3.2.5 Integral theorems

Some important integral theorems are:
Gauss: ﬂ (v-7)d*A = ///(divﬁ)d‘gv
Stokes for a scalar field: j{(¢ - €;)ds = //(ﬁ x grad¢)d? A

Stokes for a vector field: ]{(17 éy)ds = //(curlﬁ- i)d*A

this gives: ﬂ (curl? - A)d*A =0

Ostrogradsky: ﬂ (7 x 7)d*A = / / / (curlv)d® A
ﬂ (¢ )d*A = ///(grad¢)d3v

Here the orientable surface [[ d*4 is bounded by the Jordan curve s(t).

3.2.6 Multiple integrals
Let A be a closed curve given by f(z,y) = 0, than the surface A inside the curve in IR? is given by

- ff o=

Let the surface A be defined by the function z = f(x,y). The volume V bounded by A and the zy plane

is than given by:
V=[] fedsay
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The volume inside a closed surface defined by z = f(z,y) is given by:

V:///d3V://f(x7y)d;vdy:///dmdydz

3.2.7 Coordinate transformations

The expressions d2A and d*V transform as follows when one changes coordinates to @ = (u,v,w) through
the transformation z(u,v,w):

V:///f(x,y,z)dzdydz:/// f(Z(w)) ? dudvdw
U
In IR? holds:
0T |z,
ot | Yu Yo

Let the surface A be defined by z = F(z,y) = X (u,v). Than the volume bounded by the zy plane and F
is given by:

//f(g?)cﬂA _ // F(#(@)) ‘aaf x %ﬂ dudv = // f @y, F(a,y)\ 1+ 0,F2 + 0, F2dudy
S G G

3.3 Orthogonality of functions

The inner product of two functions f(x) and g(z) on the interval [a, b] is given by:

b

(f.9) = / f(2)g(z)dx

a
or, when using a weight function p(x), by:

b

(f.9) = / p(2) f (2)g(x)da

a

The norm || f|| follows from: || f]|*> = (f, f). A set functions f; is orthonormal if (fi, f;) = d;;.

Each function f(z) can be written as a sum of orthogonal functions:
f@) =Y cigi(x)
=0

and Y ¢ < ||f||?. Let the set g; be orthogonal, than it follows:

fagi

c; =
’ (givgi)
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3.4 Fourier series

Each function can be written as a sum of independent base functions. When one chooses the orthogonal
basis (cos(nz),sin(nz)) we have a Fourier series.

A periodical function f(x) with period 2L can be written as:

f(z)=ao+ i [an cos (?) + b, sin (%)}
n=1

Due to the orthogonality follows for the coefficients:

L . .
ao:ﬁ f®)dt anzz/f(t)cos (TLLWt) dt bn:z/f(t)sin (nL7Tt> i@t

A Fourier series can also be written as a sum of complex exponents:

flz) = Z Cnem:C

n=-—oo
with

1T ,
Cn = %/f(ac)e_”””dac

The Fourier transform of a function f(z) gives the transformed function f(w):

P 1 r —iwT
f(w)=m£ fla)e o de

The inverse transformation is given by:

N |

[Fat) + fa)] =%27T [ Ferera

where f(2%) and f(27) are defined by the lower - and upper limit:

fa™) =lim f() . f(a*)=lim f(x)

zTa zla

For continuous functions is 3 [f(z™) + f(z7)] = f().
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Differential equations

4.1 Linear differential equations

4.1.1 First order linear DE

The general solution of a linear differential equation is given by ya = yg + yp, where yg is the solution of
the homogeneous equation and yp is a particular solution.

A first order differential equation is given by: y'(z) + a(x)y(x) = b(x). Its homogeneous equation is
y'(x) + a(z)y(x) = 0.

The solution of the homogeneous equation is given by
yu = kexp (/ a(x)dx)

Substitution of exp(Az) in the homogeneous equation leads to the characteristic equation A+ a =10
=>A=—a.

Suppose that a(z) = a =constant.

Suppose b(x) = aexp(ux). Than one can distinguish two cases:
1. X\ # u: a particular solution is: yp = exp(ux)

2. X = p: a particular solution is: yp = xexp(ux)

When a DE is solved by variation of parameters one writes: yp(x) = yu(z)f(z), and than one solves f(x)
from this.

4.1.2 Second order linear DE

A differential equation of the second order with constant coefficients is given by: y”(z) + ay’(z) + by(x) =
¢(x). If e(x) = ¢ =constant there exists a particular solution yp = ¢/b.

Substitution of y = exp(Az) leads to the characteristic equation A% + a\ + b = 0.

There are now 2 possibilities:
1. A1 # Ao than yg = aexp(Ai1z) + Sexp(Aaz).

2. A1 = A2 = A: than yg = (a + Bz) exp(Ax).

23
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If ¢(x) = p(x) exp(ux) where p(x) is a polynomial there are 3 possibilities:
LA, A # e yp = q(z) exp(px).
2. A=, Ao # et yp = zq(z) exp(pz).
3. A1 =X = yp = 22q(x) exp(ux).

where ¢(z) is a polynomial of the same order as p(z).

When: 3" (z) + w?y(z) = wf(z) and y(0) = 3’ (0) = 0 follows: y(x) = [ f(z)sin(w(x — t))dt.

O—x5

4.1.3 The Wronskian

We start with the LDE y”(z) + p(2)y’(z) + ¢(x)y(x) = 0 and the two initial conditions y(xg) = Ky and
y'(x0) = Ky. When p(x) and ¢(z) are continuous on the open interval I there exists a unique solution
y(z) on this interval.

The general solution can than be written as y(z) = ¢1y1 () +co2ya2(x) and y; and y, are linear independent.
These are also all solutions of the LDE.

The Wronskian is defined by:

= Y1ys — Y2

Yy Y2
Wiy, =
(yl y2) ‘ yi y/2

y1 and yo are linear independent if and only if on the interval I when Jxy € I so that holds:
W (y1(z0), y2(wo)) = 0.
4.1.4 Power series substitution

When a series y = Y ana™ is substituted in the LDE with constant coefficients y” (x) + py'(z) + qy(z) = 0
this leads to:

Z [n(n — l)anx"_2 + pnapz™ !+ qanx"] =0

n

Setting coefficients for equal powers of = equal gives:
(n+2)(n+1)apt2 +p(n + apt1 + gap, =0

This gives a general relation between the coefficients. Special cases are n = 0,1, 2.

4.2 Some special cases

4.2.1 Frobenius’ method
Given the LDE

d?y(x) N b(x) dy(x) N ()

dx? r dx 2



Chapter 4: Differential equations 25

with b(x) and ¢(z) analytical at 2 = 0. This LDE has at least one solution of the form
yi(x) = 2™ Z apx” with ¢ =1,2
n=0
with 7 real or complex and chosen so that ag # 0. When one expands b(z) and c(x) as b(z) = by + byz +
box? + ... and c(z) = ¢y + c1x + cox? + ..., it follows for 7:
r2 4 (bg—1)r+co=0

There are now 3 possibilities:

1. 71 = ro: than y(z) = y1(z) ln |z| + y2(z).

2. 1y —ry € IN: than y(z) = ky1(x) In |z| + y2(x).

3. 11— 1y # Z: than y(z) = y1(2) + y2(x).

4.2.2 FEuler

Given the LDE 2y () (@)
d7y(x dy(x
2
¥ a2 tax dx
Substitution of y(z) = 2" gives an equation for r: 72 + (a — 1)r + b = 0. From this one gets two solutions
r1 and ro. There are now 2 possibilities:

+by(z) =0

1. 71 # ro: than y(z) = Cra™ + Cyz™.

2. ry =71y =r: than y(r) = (C1In(z) + Co)z".

4.2.3 Legendre’s DE
Given the LDE

1) )

The solutions of this equation are given by y(z) = aP,(z) + by2(x) where the Legendre polynomials P(x)

are defined by:
dn (1 _ x2)n
Pol®) = G (m)

+n(n—1Dy(z) =0

For these holds: ||P,|? =2/(2n + 1).

4.2.4 The associated Legendre equation

This equation follows from the #-dependent part of the wave equation V2W¥ = 0 by substitution of
& = cos(6). Than follows:

1-% (-5 oa- ) - mP) =0
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Regular solutions exists only if C' =1[(l + 1). They are of the form:

\mlpO(g) (1 _52)|m\/2 dlml+l

m m d
p"l(g) = (1 - ¢/ agml ~ 21 dglml+

— 1)l

For |m| > [ is Pl‘ml(g) = 0. Some properties of P (£) zijn:

1 oo

2 1
/on(f)Plg(f)df = m&l' .Y RO = iosie
=0

-1

This polynomial can be written as:

/ (4 &2 —1cos(f

0

m»a

4.2.5 Solutions for Bessel’s equation

Given the LDE
Py(z) | dy(z)
22
dx? T dx

also called Bessel’s equation, and the Bessel functions of the first kind

+ (2% = v*)y(z) =0

o 0 (71)mx2m
Jow) == Z 22mtvmIT (v + m 4+ 1)

m=0

for v := n € IN this becomes:

o (71)mx2m
Jn(z) =2 mz::O 22m+nml(n + m)!
When v # Z the solution is given by y(z) = aJ,(x) + bJ_,(z). But because for n € Z holds:
n(z) = (=1)"J,(z), this does not apply to integers. The general solution of Bessel’s equation is given

by y(x) = aJ,(x) + bY,(x), where Y, are the Bessel functions of the second kind:

Ju(x) COS(VT‘-) — J_V(x) and Yn(l‘) = lim Yu(x)

sin(v) von

Y., (z) =

The equation 2%y”(x) + zy'(z) — (2% + v?*)y(z) = 0 has the modified Bessel functions of the first kind
I,(x) =iV J,(iz) as solution, and also solutions K, = 7[I_,(x) — I, (x)]/[2sin(v7)].

Sometimes it can be convenient to write the solutions of Bessel’s equation in terms of the Hankel functions

HV(2) = Jo(2) + iY(z) , HP(2) = Ju(2) — iV, (2)
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4.2.6 Properties of Bessel functions
Bessel functions are orthogonal with respect to the weight function p(x) = x.

J_n(z) = (=1)"J,(x). The Neumann functions N,,(x) are definied as:

1 I — o
Np(z) = %Jm(x) In(z) + e nE,O o
The following holds: lirr%) Im () = 2™, lirr%J Npp(x) =27™ for m # 0, lirrb No(z) = In(x).
xr— xr— r—
fim H(r) = O i () =[S cos(r - a) |, Jim Ja(e) =\ sine )
im =—— im J,(z) =4/ —cos(zx —z,) , lim J_,(z)=4/—sin(z—z,
lim H(r 7 ;o lim (2 —cos(z—a Jim. x —sin(z —z

with z,, = iw(n+ 3).

Int1(z) + Jn-1(z) = ?Jn(x) s Ing1(@) = Jnoa(z) = 2

The following integral relations hold:

™

3

2m
Im () = % /exp[i(gc sin(f) — m#)]df = 1 /cos(x sin(f) — m#)do

o

4.2.7 Laguerre’s equation

Given the LDE

Solutions of this equation are the Laguerre polynomials L, (z):

L) = S o) = 32 S (1)

m=0

4.2.8 The associated Laguerre equation

Given the LDE

fmm+(m+1_0dmm+<n+%m+w>mwzo

dx? x dx T

Solutions of this equation are the associated Laguerre polynomials L (x):

m _ (_1)mn] —x,. . —m dr—m —x_n
Lii(@) = (n—m)!e T g (e v )
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4.2.9 Hermite

The differential equations of Hermite are:

d*He,, dHe,,
+2nH, () =0 and en(®) _ s (@) + nHe,(x) =

d*H,, () dH,,(x)
-2 dx? dx

dx? dx

Solutions of these equations are the Hermite polynomials, given by:

H,(z) = (—=1)" exp <;x2>

d"(exp(—%xz))

dan = 2"/?He, (2V/2)

d" (exp(—2?))

He, (z) = (—1)"(exp (z*) = 27"/2H,,(z/V2)

dzm
4.2.10 Chebyshev
The LDE
d*U, () AU, (x)
_ 2 n _ n —_
(1—2%) U2 3z T +n(n+2)U,(z) =0
has solutions of the form
sin[(n + 1) arccos(z)]
Up(z) =

(@) Vi-a?
The LDE

2

(1- xQ)d Tn(z) _ xdTn(m) + 12T, (x) =0

dx? dx

has solutions T,,(x) = cos(n arccos(x)).

4.2.11 Weber
The LDE W)/ (z) + (n + 5 — $2*)W,(z) = 0 has solutions: W, (z) = He,(z) exp(—1z?).

4.3 Non-linear differential equations

Some non-linear differential equations and a solution are:

"= a\/y? + b2 y = bsinh(a(z — x¢))
"= a\/y? - b2 y = bcosh(a(z — z0))
a\/b? —y? y = beos(a(x — xq))

Y

Y

y/

y; = a(y? + v? y = btan(a(x — xo))
v

)

)
y? — b2) y = beoth(a(z — x))
) y = btanh(a(z — x0))

"—q b—y _ b
W\ YTIT Cbexp(—ax)
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4.4 Sturm-Liouville equations

Sturm-Liouville equations are second order LDE’s of the form:

-Qi@@ﬂ§?)+«wmm=Amwwu>

The boundary conditions are chosen so that the operator

=2 (se)g ) + oo

is Hermitean. The normalization function m(z) must satisfy

b
/ﬁummwwm:%

a
When y;(x) and yo(x) are two linear independent solutions one can write the Wronskian in this form:

C

W(y17y2) = ‘ yll y2 - p(f]}')

(T

where C' is constant. By changing to another dependent variable u(x), given by: u(z) = y(x)/p(x), the
LDE transforms into the normal form:

d*u(x) (e =0 wi 2 = 1 (p'(z) 2 _1p"(z)  q(z) — Am(z)
T o) =0 i 1t = 3 () - TS - 10

4
If I(x) > 0, than y”/y < 0 and the solution has an oscillatory behaviour, if I(xz) < 0, than 3" /y > 0 and
the solution has an exponential behaviour.

4.5 Linear partial differential equations

4.5.1 General

The normal derivative is defined by:

ou -
67’]7, - (vua n)

A frequently used solution method for PDE’s is separation of variables: one assumes that the solution
can be written as u(x,t) = X (x)T(¢t). When this is substituted two ordinary DE’s for X (z) and T'(t) are
obtained.

4.5.2 Special cases
The wave equation

The wave equation in 1 dimension is given by
0%u 5 0%u
i e
ot? ox?
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When the initial conditions u(z,0) = ¢(x) and du(z,0)/0t = ¥(x) apply, the general solution is given by:

x4ct
u(z,t) = % [o(x + ct) + p(x — ct)] + % / U (&)d¢

The diffusion equation

The diffusion equation is:

Its solutions can be written in terms of the propagators P(x,«’,t). These have the property that
P(z,2',0) = §(xr — 2’). In 1 dimension it reads:

1 —(z — :r:')2>
P(z,2' t) = ex
(@20 = 5 e &P ( 4Dt
In 3 dimensions it reads: ,
| —(F— &)
P ') = — —w=r )
(@.2%.t) = S D eXp( 4Dt )

With initial condition u(x,0) = f(x) the solution is:

u(:c,t):/f(:c')P(x,x/,t)dx’
g

The solution of the equation
ou 0%u
——-D— = t
5~ Paz = 9@1)
is given by

u(x, t) = /dt'/dx’g(x'7t’)P(x,x',t—t’)

The equation of Helmholtz

The equation of Helmholtz is obtained by substitution of u(Z,t) = v(¥)exp(iwt) in the wave equation.
This gives for v:
V20(Z,w) + k?v(Z,w) =0

This gives as solutions for v:

1. In cartesian coordinates: substitution of v = Aexp(ik - Z ) gives:

o(F) = / / A(k)e®7

with the integrals over k2 = k2.
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2. In polar coordinates:
Z i (k1) + By Ny (kr))e™#
m=0

3. In spherical coordinates:

0 l
v(r,0,0) = > [Aun i1 (kr) +BlmJ_l_§(kr)}Y(\9/’;¢)
=0 m=—1

4.5.3 Potential theory and Green’s theorem

Subject of the potential theory are the Poisson equation V?u = — f(Z') where f is a given function, and the
Laplace equation V?u = 0. The solutions of these can often be interpreted as a potential. The solutions of
Laplace’s equation are called harmonic functions.

When a vector field ¢ is given by ¥ = grady holds:

b

/ (5,7)ds = o(B) — (@)

a
In this case there exist functions ¢ and @ so that ¥ = grade + curlw.

The field lines of the field ¥(Z) follow from:

The first theorem of Green is:

///uV%—i— (Vu, Vv) d3 # —dz

The second theorem of Green is:

///uv%—w? |43V = ﬂ( Ov )dZA

A harmonic function which is 0 on the boundary of an area is also 0 within that area. A harmonic function
with a normal derivative of 0 on the boundary of an area is constant within that area.

The Dirichlet problem is:
Viu(@)=—f(&) , T€R , u(@)=g(&) foral &ecS.
It has a unique solution.

The Neumann problem is:

= h(Z) for all Ze€ S.
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The solution is unique except for a constant. The solution exists if:

—/4/ f(f)d3v—5§§ h(Z)d*A

A fundamental solution of the Laplace equation satisfies:
V2u(#) = —6(F)
This has in 2 dimensions in polar coordinates the following solution:

u(r) = h;(;)

This has in 3 dimensions in spherical coordinates the following solution:

1
) =
The equation Vv = —§(& — E) has the solution
1
(@)= ———
17— €]

After substituting this in Green’s 2nd theorem and applying the sieve property of the § function one can
derive Green’s 3rd theorem:

- 1 Vu o 1 10u 0 (1 2
€= [[[ T 15 v (7)) 4
R S

The Green function G(Z, _') is defined by: V2G = 75(575), and on boundary S holds G(Z,£) = 0. Than
G can be written as:

. 1 .
G(Z,§)=———= +9(@,¢
#.6) = g H9EO)
Than ¢(Z, { ) is a solution of Dirichlet’s problem. The solution of Poisson’s equation V2u = — f(Z) when

on the boundary S holds: w(Z) = g(¥), is:

u€) = [[[ c@drr@av - §f o
R S

8
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