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In the Physics 214 laboratories we make extensive use of diffraction gratings:
plastic films inscribed with thousands of fine grooves. These useful devices make
use of the same concepts that we’ve discussed with two-slit interference. Below I
give a brief discussion of these tools that may prove useful for the laboratory and
pre-lab exercises. Note that we do not discuss gratings extensively in lecture,
and you will not be tested on the additional material below.

1 Reminder: two-slit interference

In this course we’ve discussed in some detail the workings of a 2-slit diffraction
experiment. Light of wavelength λ is normally incident upon an opaque screen
inscribed with a pair of identical parallel slits, spaced apart by a distance d. If
we project the transmitted light from this assembly onto a distant screen we will
see a pattern of light and dark fringes. This occurs because of the wave nature
of light: if observed from an angle θ relative to the central axis of the beam, the
light transmitted through the two slits will arrive with a relative phase given
by φ = 2π d sin θλ . This leads to fully constructive interference (bright fringes)
at angles for which d sin θ = mλ for any integer m, and complete destructive
interference (dark fringes) at angles for which d sin θ = (m + 1/2)λ. We often
describe the integer m as the order of the fringes, e.g. the maxima at m = ±1
are the “first-order” fringes, m = ±2 are the “second-order” fringes, etc.

Using phasors we can derive the complete intensity pattern projected onto
the distant screen:

I(θ) = 4I1 cos2 (φ/2) , (1)

where I1 is the intensity transmitted through each slit on its own.
Note that the above discussion assumes ideal, infinitely-narrow slits. Since

real slits have some finite width, the sinusoidal pattern above is further modu-
lated by the effects of single-slit diffraction. This adds an “envelope” to the
interference pattern that suppresses the higher-order fringes. More orders will
thus be visible with narrow slits, fewer orders with wide slits. We study this
effect qualitatively in Lab 1; a full discussion is beyond the scope of this course,
and leads toward important topics such as convolution and Fourier optics.
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2 A two-slit spectrometer

Now imagine that we illuminate our two-slit apparatus with a beam containing
two wavelengths of light, λ1 and λ2. Each wavelength will produce its own pat-
tern of equally-spaced fringes, but the spacings will be different: the first will
give bright fringes at θ1,m = sin−1 (mλ1/d), the second at θ2,m = sin−1 (mλ2/d).
The central bright fringe (m = 0) coincides for both (and indeed all) wave-
lengths; for this reason it is often called the white light fringe. The higher-order
fringes of the two wavelengths will be separated, however, and the separation
will increase with m.

We can thus use a two-slit apparatus as a simple spectrometer: a tool for
measuring wavelengths. Since different wavelengths of light place fringes at dif-
ferent places, by measuring the fringe spacings we can estimate the wavelength
of the incident light. Unfortunately, two slits make for a very poor spectrome-
ter: the cosine-squared pattern in Equation 1 yields wide, blurry fringes. The
fringes of different wavelengths overlap and are difficult to distinguish.

3 Multi-slit interference

Suppose we now add a third slit to our apparatus, each separated by a distance
d from its neighbors and all illuminated by the same wavelength λ. Let’s think
qualitatively about what the diffraction pattern from this assembly will look
like (see the left panel of Figure 1):

• The maxima (bright fringes) will be in the same locations. To see
this, note that if the light from slits 1 and 2 are in-phase as seen from some
angle, then the common spacing means that light from slit 3 must also be
in phase with that from slit 2. Fully-constructive interference fringes thus
occur at d sin θ = mλ, as before.

• There are now more minima (dark fringes), because there are more
ways to get fully-destructive interference. It’s easiest to see this with
phasors: if the relative phase difference between adjacent slits is 2π/3,
then the three phasors will form an equilateral triangle and sum to zero.
The same will happen at a phase difference of 4π/3, so there are now two
equally-spaced dark fringes between each bright fringe.

• Note that the additional minima serve to make each bright fringe nar-
rower than in the two-slit case, with two dark minima and one dimmer
fringe in between each pair of bright fringes.

We can extend this logic to the general case of N slits. A full phasor analysis
leads to the N -slit formula given in Lab 1:

I(θ) = I1

(
sin (Nφ/2)

sin (φ/2)

)2

. (2)

By plotting this equation we can observe that as N increases at fixed d the bright
fringes become brighter and narrower (because of the additional minima).
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Figure 1: Left: Representative 2-, 3-, and 4-slit interference patterns with the
same spacing and wavelength, illustrating how the bright fringes remain in the
same places but become narrower with increasing N . Right: 10-slit interference
patterns for two wavelengths that just satisfy the distinguishability criterion
at first order: the peak of one fringe lines up with the first minimum of the
next. Note that the 2nd-order fringes are more easily distinguishable, though
dimmer. Typical gratings have far higher N , and can thus distinguish more
closely-separated wavelengths. Figures by L. Wagner.
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4 The diffraction grating: a better spectrometer

A diffraction grating is a sheet of material inscribed with a periodic pattern (e.g.
grooves) that affects the transmission or reflection of light. Such a grating acts
like an N -slit interference system, where N is the number of grooves illuminated
by the light. Note that it’s the number of illuminated grooves that matters -
it’s no help to have a million slits if the light only shines on a hundred of them!

Like our two-slit spectrometer above, a grating directs different wavelengths
of light to different angles: the m-th order fringe of wavelength λ appears at
angle θm = sin−1 (mλ/d). But now each fringe is much, much narrower, allowing
us to measure wavelength precisely and distinguish wavelengths of light that
are very similar to one another. Moreover, the angular spacing between fringes
of different wavelengths is greater for higher-order fringes, making it easier to
distinguish nearby spectral features.

In Labs 1 and 2 you will use gratings to measure the wavelengths of light
from various sources: a laser and several LED lamps, respectively. In Lab 4
you will combine a grating with a high-precision tool for angle measurement in
order to measure the energies of quantum transitions in unknown gas samples.

5 Resolution limit of the diffraction grating

Suppose that we have a light source (e.g. a gas discharge lamp) that emits at
two nearby wavelengths, λ1 = λ and λ2 = λ+ ∆λ, with ∆λ/λ � 1. This light
illuminates N lines of a diffraction grating with line spacing d, and we examine
the m-th order fringes projected onto a distant screen. Assume for simplicity
that the small-angle approximation is valid (sin θ ≈ θ).

1. The m-th order principle maxima (bright fringes) from each wavelength
appear at angles d sin θm,i = mλi. With the small-angle approximation,
θm,i ≈ mλi/d and the angular separation between these maxima is given
by ∆θm = θm,2 − θm,1 ≈ m∆λ/d.

2. With N slits there are (N − 1) minima equally spaced between the order-
m and order-(m+ 1) fringes. The half-width of each bright fringe is thus
the angular distance between the fringe center and the nearest minimum,
which is δθm ≈ λ

Nd .

3. The fringes from λ and λ+∆λ will be barely distinguishable if the peak of
one fringe lines up with the first minimum of the next, i.e. if ∆θm = δθm.
So finally, the two fringes will be distinguishable if

∆λ

λ
&

1

Nm
(3)

This last is our final expression for the approximate resolution of a spectrometer
built from a grating with N illuminated slits observed at order m. An example
is shown in the right panel of Figure 1.

4


