A cylinderical resistor with length L = 9 cm, radius r = 0.5 cm and resistivity $\rho = 2 \times 10^{-4} \Omega \cdot m$, is connected to a battery of voltage V= 6 V, as shown in the Figure to the right:

1) What is the electric field inside the resistor?

a. $12 \hat{x} \text{ V/cm}$ b. $-12 \hat{x} \text{ V/cm}$ c. $0.667 \hat{x} \text{ V/cm}$ d. $3 \times 10^4 \hat{x} \text{ V/cm}$ e. $-0.667 \hat{x} \text{ V/cm}$

2) (On average) How much charge passes through the surface A in 1 second?

a. 3×10^4 C b. 26.2 C c. -3×10^4 C

A capacitor with capacitance $C = 10^{-5}$ F is initially charged by connecting it to a battery of voltage 9 V and waiting for a long time. The capacitor is then disconnected from the battery after which it is connected to a resistor with resistance 5 Ω as shown:

3) Immediately after the resistor is connected what is the current through the resistor?

- a. 9×10^{-5} Amps b. 1.8 Amps c. 5×10^{-5} Amps
- 4) How long after the resistor is connected does it take for the charge on the capacitor to reach the value 1/5 of the initial charge?
 - a. 4.7×10^{-4} sec b. 8×10^{-5} sec c. 5×10^{-5} sec

5) We now connect an identical charged up capacitor to a network of resistors shown in the figure below.

Compare the new time the capacitor takes to discharge to 1/5 of the initial charge, with the time from the previous problem:

a. It now takes longer

b. It now takes less time

c. It takes the same time

Three resistors ($R_1 = 10 \Omega$, $R_2 = 15 \Omega$, $R_3 = 25 \Omega$) are connected to two batteries (E_1 is unknown, $E_2 = 11 \text{ V}$) as shown in the figure.

6) Which of the following equations is NOT correct:

- a. $I_1 R_1 + E_1 = 0$ b. $-I_3 R_3 + E_1 - E_2 = 0$ c. $-I_3 R_3 + I_1 R_1 - E_2 = 0$ d. $-I_2 R_2 - E_1 = 0$ e. $-I_3 R_3 - I_2 R_2 - E_2 = 0$
- 7) The current I_3 through resistor R_3 is measured to be 0.48 amps, in the direction shown by the arrow. What is the voltage across battery E_1 ?
 - a. $E_1 = 11 \text{ V}$ b. $E_1 = 23 \text{ V}$ c. $E_1 = 1 \text{ V}$
- 8) What is I_4 the current through battery E_1 ?
 - a. $I_4 = 2 A$ b. $I_4 = 2.8 A$ c. $I_4 = 2.5 A$ d. $I_4 = 0.92 A$ e. $I_4 = 4.3 A$

Two long parallel wires are separated by a distance of 2.5 cm. The force per meter that each wire exerts on the other is 5 x 10^{-5} N/m, and the wires <u>attract</u> each other. The current in one of the wires, I_1 , is 0.5 A.

a. 12.5 A b. 2.5 A c. 0.5 A d. 6.25 A e. 4.81 A

10) Are the currents in the two wires flowing in the same direction or in opposite directions?

- a. the same direction
- b. not enough information is given in the problem to answer this question
- c. opposite directions

A square loop of side s = 0.5 m lies in the *x*-*y* plane and carries a current of I = 1.2 A flowing in the clockwise direction (as viewed from z > 0). A constant, uniform magnetic field of magnitude B = 0.6 T points in the +*x* direction, as shown in the figure.

- 11) The torque exerted by the magnetic force on this loop is pointing in the direction:
 - a. +y b. -x c. +z d. -y e. +x
- 12) The amount of work required to rotate this loop to an orientation which has the maximum potential energy is:
 - a. 0 J b. 0.18 J c. 0.36 J
- 13) How much work is required to rotate the loop by 45 degrees around the *z*-axis such that the segment *ab* is now oriented along the *x*-axis (see figure below)?

a. 0.18 J b. 0.09 J c. 0 J

An electron of mass *m* and charge *q* is put in a track and accelerated to the right (in the plane of the paper) from rest through a potential difference *V*. The electron then enters a region containing a uniform magnetic field (direction of *B* is out of the page). The electron makes a 180° turn in the field to enter a track that is parallel to its initial trajectory.

14) When the electron is in the magnetic field region, its speed v:

a. remains constant.b. increases.c. decreases.

15) How much time does the electron spend in the magnetic field region? [Hint: $\Delta t = distance/speed$]

a. 2.2×10^{-45} s b. 9.5×10^{-6} s c. 4.7×10^{-23} s d. 2.8×10^{-11} s e. 8.9×10^{-11} s 16) An infinitely long, thin wire carries a current I along the x axis. What is the contribution to the magnetic field at a point P = (0, h) due to **only** the segment of the wire between point A = (-a, 0) and point B = (a, 0)?

The next two questions pertain to the situation described below.

A conducting bar of mass m = 0.3 kg slides with negligible friction along a pair of horizontal conducting tracks separated by a distance d = 0.15 m, as shown in the figure below. The left side of the loop contains a resistor with resistance $R = 20 \Omega$. There is a constant magnetic field, B = 2 T, directed out of the page.

17) What is the current through the resistor when the metallic bar is a distance w = 0.225 m from the end sliding with a constant speed v = 4 m/s?

a. *I* = 0.00338 A b. *I* = 0.09 A c. *I* = 0.06 A 18) What direction does the current flow, when the bar is sliding to the right at a constant speed?

- a. Counter clockwise, down through the resistor.b. Cannot determine the direction of the current.
- c. Clockwise, up through the resistor.

A wire of radius r = 11.1 cm is centered at the origin carries a uniform current $I_{out} = 0.295$ A out of the page. Points P and Q are placed at distances of $r_P = 18$ cm and $r_Q = 5$ cm from the origin respectively, as shown in the figure below.

- 19) What is the magnitude of the magnetic field at Point *P*?
 - a. $|\vec{B}| = 2.6 \times 10^{-7} \text{ T}$ b. $|\vec{B}| = 5.3 \times 10^{-7} \text{ T}$ c. $|\vec{B}| = 3.3 \times 10^{-7} \text{ T}$

20) What is the magnitude of the magnetic field at Point Q?

a.
$$|\vec{B}| = 2.9 \times 10^{-9} \text{ T}$$

b. $|\vec{B}| = 2.4 \times 10^{-7} \text{ T}$
c. $|\vec{B}| = 4.75 \times 10^{-7} \text{ T}$
d. $|\vec{B}| = 8.6 \times 10^{-8} \text{ T}$
e. $|\vec{B}| = 1.2 \times 10^{-6} \text{ T}$

A circular wire with radius *r* and resistance *R* is placed within a time-dependent but uniform magnetic field at *t* = 0 sec, as seen in the figure below. The magnetic field is given by $B(t) = B_0 t^2$ and points out of the page. Here, r = 5.5 cm, $R = 7 \Omega$, and $B_0 = 5$ mT/s².

21) What is the magnetic flux through the wire at t = 5.1 sec?

a. $\Phi = 0.0012 \ T \cdot m^2$ b. $\Phi = 4.8 \times 10^{-5} \ T \cdot m^2$ c. $\Phi = 0.0095 \ T \cdot m^2$

22) What is the magnitude of the induced current at t = 3.7 sec?

a. $I = 1.8 \times 10^{-4} A$ b. $I = 5 \times 10^{-5} A$ c. $I = 6.5 \times 10^{-4} A$ d. I = 0 Ae. $I = 3.5 \times 10^{-4} A$

23) As time increases, the heat dissapated in the loop :

a. Stays the same

b. Decreases

c. Increases

A circuit is constructed with two resistors and one inductor as shown in the Figure below. The values for the resistors are: $R_1 = 3.5 \Omega$ and $R_2 = 6 \Omega$. The battery voltage is V = 13 V. The switch S is initially open.

- 24) After the switch has been opened a long time, it is closed. What is the magnitude of the voltage across L immediately after the switch is closed?
 - a. 8.2 V
 - b. 0 V
 - c. 4.8 V
 - d. 7.6 V
 - e. 13 V
- 25) After the switch has been closed a long time it is opened again. What is the magnitude of the current through R_2 immediately after the switch is opened?
 - a. 5.6 A b. 2.2 A c. 0 A d. 3.7 A e. 1.4 A