Physics 101: Lecture 23 Sound

Exam Results

Standing Waves Fixed Endpoints

Fundamentaln=1 (2 nodes)

•
$$\lambda_n = 2L/n$$

$$\bullet f_n = n v / (2L)$$

Standing Waves Example

A guitar's E-string has a length of 65 cm and is stretched to a tension of 82N. If it vibrates with a fundamental frequency of 329.63 Hz, what is the mass of the string?

$$v = \sqrt{\frac{T}{\mu}}$$

 $f = v / \lambda$ tells us v if we know f (frequency) and λ (wavelength)

$$v = \lambda f$$

= 2 (0.65 m) (329.63 s⁻¹)
= 428.5 m/s

$$v^{2} = T / \mu$$

$$\mu = T / v^{2}$$

$$m = T L / v^{2}$$

$$= 82 (0.65) / (428.5)^{2}$$

$$= 2.9 \times 10^{-4} \text{ kg}$$

Standing Waves in Pipes

A pressure node is where pressure is normal (open to atmosphere)

NOTE: A pressure *node* corresponds to a displacement *antinode* and A pressure *antinode* corresponds to a displacement *node*

Open at both ends:

Pressure Node at end

$$\lambda = 2 L / n n = 1,2,3...$$

Open at one end:

Pressure AntiNode at closed end : $\lambda = 4L/n$

n odd

Standing Waves in Pipes

A pressure node is where pressure is normal (open to atmosphere)

NOTE: A pressure *node* corresponds to a displacement *antinode* and A pressure *antinode* corresponds to a displacement *node*

Open at both ends:

Pressure Node at end

$$\lambda = 2 L / n n = 1,2,3...$$

Open at one end:

Pressure AntiNode at closed end : $\lambda = 4L/n$

n odd

Organ Pipe Standing Wave Example

A 0.9 m organ pipe (**open at both ends**) is measured to have its second harmonic at a frequency of 382 Hz. What is the speed of sound in the pipe?

Note: fundamental, n=1, has a wavelength of $\lambda = 2$ L

Pressure Node at each end.

$$\lambda = 2 L / n n = 1,2,3...$$

 $\lambda = L$ for second harmonic (n=2)

$$v = f \lambda = (382 \text{ s}^{-1}) (0.9 \text{ m})$$

= 343 m/s

Clicker Q

 What happens to the fundamental frequency of a pipe, if the air (v=343 m/s) is replaced by helium (v=972 m/s)?

1) Increases

- 2) Same 3) Decreases

Speed of Sound

- Recall for pulse on string: $v = sqrt(T/\mu)$
- For fluids: $v = sqrt(B/\rho)$

B = bulk modulus

Medium	Speed (m/s)
Air	343
Helium	972
Water	1500
Steel	5600

Frequency Clicker Q

A sound wave having frequency f_0 , speed v_0 and wavelength λ_0 , is traveling through air when in encounters a large helium-filled balloon. Inside the balloon the frequency of the wave is f_1 , its speed is v_1 , and its wavelength is λ_1 Compare the frequency of the sound wave inside and outside the balloon

- 1. $f_1 < f_0$
- 2. $f_1 = f_0$
- 3. $f_1 > f_0$

Velocity Clicker Q

A sound wave having frequency f_0 , speed v_0 and wavelength λ_0 , is traveling through air when in encounters a large helium-filled balloon. Inside the balloon the frequency of the wave is f_1 , its speed is v_1 , and its wavelength is λ_1 Compare the speed of the sound wave inside and outside the balloon

1.
$$v_1 < v_0$$

2.
$$v_1 = v_0$$

3.
$$v_1 > v_0$$

Wavelength Clicker Q

A sound wave having frequency f_0 , speed v_0 and wavelength λ_0 , is traveling through air when in encounters a large helium-filled balloon. Inside the balloon the frequency of the wave is f_1 , its speed is v_1 , and its wavelength is λ_1 Compare the wavelength of the sound wave inside and outside the balloon

1.
$$\lambda_1 < \lambda_0$$

2.
$$\lambda_1 = \lambda_0$$

3.
$$\lambda_1 > \lambda_0$$

Intensity and Loudness

- Intensity is the power per unit area of a sound.
 - \rightarrow I = Power / A
 - \rightarrow Units: $(J/s)/m^2$ (= Watts/m²)
- Loudness (Decibels): We hear "loudness" not intensity, and loudness is a logarithmic scale.
 - → Loudness perception is logarithmic
 - → Threshold for hearing $I_0 = 10^{-12} \text{ W/m}^2$ (defined as 0 dB)
 - → Threshold for pain $I = 10^0 \text{ W/m}^2 = 1 \text{ W/m}^2 (= 120 \text{ dB})$
 - This is a huge range:12 orders of magnitude (12 powers of 10)
 - $\rightarrow \beta = (10 \text{ dB}) \log_{10} (I/I_0)$
 - $\Rightarrow \beta_2 \beta_1 = (10 \text{ dB}) \log_{10}(I_2/I_1)$

Log₁₀ Review

- $\log_{10}(1) = 0$
- $\log_{10}(10) = 1$
- $\bullet \log_{10}(100) = 2$
- $\bullet \log_{10}(1,000) = 3$
- $\log_{10}(10,000,000,000) = 10$
- $\log_{10}(2) = 0.3$

- $\log(a/b) = \log(a) \log(b)$
- $\log_{10}(100) = \log_{10}(10) + \log_{10}(10) = 2$

$$\beta = (10 \text{ dB}) \log_{10} (\text{ I} / \text{I}_0)$$

 $\beta_2 - \beta_1 = (10 \text{ dB}) \log_{10} (\text{I}_2/\text{I}_1)$

Intensity and Loudness

- Intensity is the power per unit area of a sound.
 - \rightarrow I = Power / A
 - \rightarrow Units: $(J/s)/m^2$ (= Watts/m²)
- Loudness (Decibels): We hear "loudness" not intensity, and loudness is a logarithmic scale.
 - → Loudness perception is logarithmic
 - → Threshold for hearing $I_0 = 10^{-12} \text{ W/m}^2$ (defined as 0 dB)
 - → Threshold for pain $I = 10^0 \text{ W/m}^2 = 1 \text{ W/m}^2 (= 120 \text{ dB})$
 - This is a huge range:12 orders of magnitude (12 powers of 10)
 - $\rightarrow \beta = (10 \text{ dB}) \log_{10} (I/I_0)$
 - $\Rightarrow \beta_2 \beta_1 = (10 \text{ dB}) \log_{10}(I_2/I_1)$

Decibels Clicker Q

- If 1 person can shout with loudness 50 dB. How loud will it be when 100 people shout? Assume $I_{100} = 100I_1$
- 1) 52 dB

2) 70 dB

3) 150 dB

Intensity Clicker Q

• Recall Intensity = Power/A. If you are standing 6 meters from a speaker, and you walk towards it until you are 3 meters away, by what factor has the intensity of the sound increased?

1) 2 2) 4

3)8

Interference and Superposition

Superposition & Interference

- Consider two harmonic waves A and B meeting at x=0.
 - \rightarrow Same amplitudes, but $\omega_2 = 1.15 \times \omega_1$.
- The displacement versus time for each is shown below:

What does C(t) = A(t) + B(t) look like??

Superposition & Interference

- Consider two harmonic waves A and B meeting at x=0.
 - \rightarrow Same amplitudes, but $\omega_2 = 1.15 \times \omega_1$.
- The displacement versus time for each is shown below:

Beats

- Can we predict this pattern mathematically?
 - → Of course!
- Just add two cosines and remember the identity:

$$A\cos(\omega_1 t) + A\cos(\omega_2 t) = 2A\cos(\omega_L t)\cos(\omega_H t)$$
 where $\omega_L = \frac{1}{2}(\omega_1 - \omega_2)$ and $\omega_H = \frac{1}{2}(\omega_1 + \omega_2)$

Checkpoint 2

A clarinet behaves like a pipe in which one end is closed and the other is open to the air. When a musician blows air into the mouthpiece and causes air in the tube of the clarinet to vibrate, the waves set up by the vibration create the **displacement** pattern of the third harmonic represented in the figure. Set x=0 at the open end of the tube.

The antinodes (locations of maxima) of the **pressure** variation of the sound waves are

located at:

A)
$$x=0$$
, $x=L/3$, $x=2L/3$, and $x=L$

- B) x=0
- C) x=0 and x=2L/3
- D) x=L/3 and x=L
- E) None of the above

Summary

• Speed of sound $v = sqrt(B/\rho)$

• Intensity $\beta = (10 \text{ dB}) \log_{10} (\text{ I}/\text{I}_0)$

Standing Waves

• Beats $\omega_L = \frac{1}{2}(\omega_1 - \omega_2)$