Physics 101 Lecture 2 Kinematics: Motion in 1-Dimension

Kinematics: Velocity

\rightarrow Velocity: the rate of change of position $\geqslant v=\Delta x / \Delta t$.
» average
» instantaneous

- Instantaneous Velocity: the slope of tangent line at any point on a position-time graph
- Example:

What is the instantaneous velocity:

$$
x=2 \mathrm{~m} \text { and } t=1 \mathrm{~s} ?
$$

$$
v=\Delta x_{\tan } / \Delta \mathrm{t}_{\tan }
$$

$$
\begin{aligned}
& \Rightarrow \Delta x_{\tan }=(3-2) \mathrm{m} \\
& \rightarrow \Delta t_{\tan }=(1.25-1) \mathrm{s}
\end{aligned}
$$

$$
\rightarrow v=\frac{1 \mathrm{~m}}{0.25 \mathrm{~s}}=4 \mathrm{~m} / \mathrm{s}
$$

$\mathrm{x}(\mathrm{m})$ Velocity: Plotting Position and Time

What is the average velocity between :
$t=1 \mathrm{~s}$ and $t=5 \mathrm{~s}$?

- $\Delta v=\Delta x / \Delta t$
$\rightarrow \Delta x=(1-2) m$
$\rightarrow \Delta t=(5-1) \mathrm{s}$
$\rightarrow v=\frac{-1 \mathrm{~m}}{4 \mathrm{~s}}=-0.25 \frac{\mathrm{~m}}{\mathrm{~s}}$
\rightarrow What does "-" mean?

PHYS 101: Lecture 2

Velocity Clicker Question

If the average velocity of a car during a trip along a straight road is positive, is it possible for the instantaneous velocity at some time during the trip to be negative?
A - Yes
B - No

Kinematics: Acceleration

\rightarrow Acceleration: the rate of change of velocity
» $a=\Delta v / \Delta t$
» average
» instantaneous

PHYS 101: Lecture 2

Acceleration: Plotting Velocity and Time

- Slope:

Instantaneous acceleration:

$a=\left(\frac{\Delta v}{\Delta t}\right)$ for small Δt
 - Example:

Velocity at $t=2$
$\rightarrow v(2)=3 \mathrm{~m} / \mathrm{s}$

What's acceleration at $t=2$?
PHYS 101: Lecture 2

Acceleration: Plotting Velocity and Time

- Area:

Displacement: $\Delta x=v \Delta t$

- Example:

Find the displacement between:

$$
\begin{aligned}
& t=0 \mathrm{~s} \text { and } t=3 \mathrm{~s} \\
& \Rightarrow t=0 \mathrm{~s} \text { to } t=1 \mathrm{~s} \\
& \quad>\Delta x_{1}=\frac{1}{2}\left(3 \frac{\mathrm{~m}}{\mathrm{~s}}\right)(1 \mathrm{~s})=1.5 \mathrm{~m} \\
& \Rightarrow t=1 \mathrm{~s} \text { to } t=3 \mathrm{~s} \\
& \quad \gg \Delta x_{2}=\left(3 \frac{\mathrm{~m}}{\mathrm{~s}}\right)(3-1 \mathrm{~s})=6 \mathrm{~m} \\
& \Rightarrow \Delta x=\Delta x_{1}+\Delta x_{2}=7.5 \mathrm{~m}
\end{aligned}
$$

Acceleration: Plotting Velocity and Time

- Average Velocity:

$$
\Delta v=\Delta x / \Delta t
$$

- Example:

Average velocity between

$$
\begin{aligned}
& t=0 \mathrm{~s} \text { and } t=3 \mathrm{~s} \\
& \Rightarrow \Delta x=7.5 \mathrm{~m}, \Delta t=3 \mathrm{~s} \\
& \Rightarrow \Delta v=\frac{7.5}{3} \frac{\mathrm{~m}}{\mathrm{~s}}=2.5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

PHYS 101: Lecture 2

Acceleration: Plotting Velocity and Time

- Average Acceleration: $\Delta a=\Delta v / \Delta t$
- Example:

Average acceleration between
$t=3 \mathrm{~s}$ and $t=5 \mathrm{~s}$

$$
\begin{aligned}
& \rightarrow \Delta v=(-2-3) \frac{\mathrm{m}}{\mathrm{~s}}=-5 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \rightarrow \Delta t=(5-3) \mathrm{s}=2 \mathrm{~s} \\
& \Rightarrow \Delta a=-\frac{5 \frac{\mathrm{~m}}{\mathrm{~s}}}{2 \mathrm{~s}}=-2.5 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

PHYS 101: Lecture 2

Graphical Representation of Acceleration: Plotting Acceleration and Time

PHYS 101: Lecture 2

Acceleration: Plotting Velocity and Time

- Area:

$$
\Delta v=a \Delta t
$$

- Example: Change in velocity between $t=1 \mathrm{~s}$ and $t=4 \mathrm{~s}$

$$
\begin{aligned}
& \Rightarrow t=1 \mathrm{~s} \text { to } t=3 \mathrm{~s} \\
& \quad » \Delta v_{1}=\left(3 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)(2 \mathrm{~s})=6 \mathrm{~m} / \mathrm{s} \\
& \rightarrow t=3 \mathrm{~s} \text { to } t=4 \mathrm{~s}
\end{aligned}
$$

$$
\begin{aligned}
&> \Delta v_{2}=\left(-2 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)(1 \mathrm{~s})= \\
&-2 \mathrm{~m} / \mathrm{s} \\
& \Rightarrow \Delta v=\Delta v_{1}+\Delta v_{2}=4 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

PHYS 101: Lecture 2

Acceleration Clicker Qs

Is it possible for an object to have a positive velocity at the same time as it has a negative acceleration?

1 - Yes
2 - No

If the velocity of some object is not zero, can its acceleration ever be zero ?
1 - Yes
2 - No

Equations for Constant Acceleration

- $x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}$
- $v=v_{0}+a t$
- $v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)$

Use these equations to predict the future path and speed of an object under constant acceleration!

Clicker Q

...interpreting graphs...

Which x vs t plot shows positive acceleration?

Kinematics: Free Fall-A Special Case

- Free Fall: An object's motion is caused by gravity alone
$\rightarrow a=g$, the acceleration of gravity
$\rightarrow g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
\rightarrow The 3 kinematic equations become:

$$
\begin{aligned}
& » y=y_{0}+v_{0 y} t-1 / 2 g t^{2} \\
& » v_{y}=v_{0 y}-g t \\
& » v_{y}^{2}=v_{0 y}^{2}-2 g\left(y-y_{0}\right)
\end{aligned}
$$

PHYS 101: Lecture 2

A Few Facts About g

- For Gravity:
\rightarrow Acceleration is $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ near the surface of the earth.
$\rightarrow g$ always points downward
\rightarrow Position may be positive, zero or negative
\rightarrow Velocity may be positive, zero or negative

- To Calculate position or velocity as a function of time:
\rightarrow Position: $y=y_{0}+v_{0 y} t-\frac{1}{2} g t^{2}$
\rightarrow Velocity: $v_{y}=v_{0 y}-g t$
- To calculate velocity as a function of position:
$\Rightarrow v_{y}^{2}=v_{0 y}^{2}-2 g\left(y-y_{0}\right)$

PHYS 101: Lecture 2

Dropped Ball Clicker Q

A ball is dropped from a height of
 two meters above the ground.

Draw v_{y} vs t

PHYS 101: Lecture 2

Dropped Ball: Position \& acceleration

A ball is dropped from a height of two meters above the ground.

- Draw v vs t

PHYS 101: Lecture 2

- Draw y vs t

- Draw a vs t

Tossed Ball Clicker Q

A ball is tossed from the ground up a height of two meters above the ground, and falls back down. \dagger^{y}

Draw vest

PHYS 101: Lecture 2

Tossed Ball, \mathbb{x}, \mathbf{V}, a relationships

A ball is tossed from the ground up a height of two meters above the ground. And falls back down

- Draw v vs t

- Draw y vs t

- Draw a vs t

Checkpoint 1: Look familiar?

A fox locates its prey, usually a mouse, under the snow by slight sounds the rodents make. The fox then leaps straight into the air and burrows its nose into the snow to catch its next meal.

1) Which of the three pairs of graphs represent the free fall motion of the fox? Assume the +y direction is pointed upward.

Checkpoint 2

The figure graphs the x component of the velocity of a car traveling in a straight line. During what intervals of time is car slowing down? 1) Interval 1: From $t=0 \mathrm{~s}$ to about $\mathrm{t}=1.3 \mathrm{~s}$
2) Interval 2: From about $t=1.3$ to $t=3 \mathrm{~s}$
3) Interval 3: From $t=3 \mathrm{~s}$ to $\mathrm{t}=4 \mathrm{~s}$
4) Interval 4: From $t=4 \mathrm{~s}$ to $\mathrm{t}=5 \mathrm{~s}$
5) Interval 5: From $t=5 \mathrm{~s}$ to $\mathrm{t}=7 \mathrm{~s}$
6) Interval 6: From $t=7 \mathrm{~s}$ to about $\mathrm{t}=8.7 \mathrm{~s}$
7) Interval 7: From about $\mathrm{t}=8.7 \mathrm{~s}$ to $\mathrm{t}=10 \mathrm{~s}$

A) Intervals 1, 3 and 5
B) Intervals 2, 4, 6 and 7
C) Intervals 2 and 4
D) Intervals 6 and 7
E) Intervals 2 and 6

Summary of Concepts

- Kinematic Quantities:
\rightarrow Position \& Displacement
\rightarrow Velocity \& Speed
\rightarrow Acceleration
- Free Fall

$$
\begin{aligned}
& \Rightarrow y=y_{0}+v_{0 y} t-1 / 2 g t^{2} \\
& \Rightarrow v_{y}=v_{0 y}-g t \\
& \Rightarrow v_{y}^{2}=v_{0 y}^{2}-2 g\left(y-y_{0}\right)
\end{aligned}
$$

PHYS 101: Lecture 2

