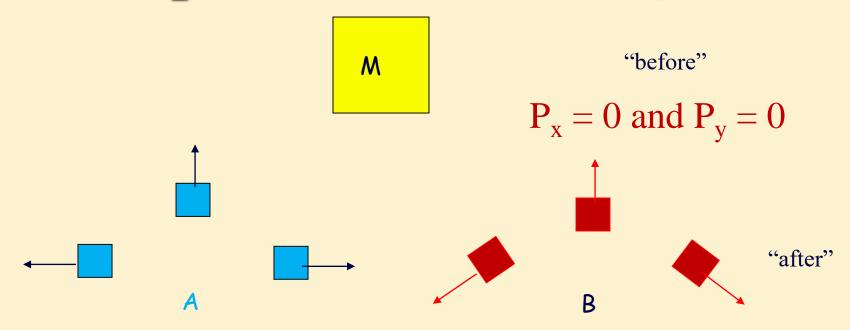
Physics 101: Lecture 13 Rotational Motion, Kinetic Energy and Rotational Inertia

Explosions Clicker Q



$$P_{\text{Net, x}} = 0$$
, but $P_{\text{Net, y}} > 0$ $P_{\text{Net, x}} = 0$, and $P_{\text{Net, y}} = 0$

$$P_{\text{Net, x}} = 0$$
, and $P_{\text{Net, y}} = 0$

Which of these is possible? (Ignore friction and gravity)

A

B

C = both

D = Neither

Center of Mass

$$ec{r}_{cm} = rac{m_1 ec{r}_1 + m_2 ec{r}_2}{\sum m_i}$$
 Center of Mass = Balance point

In practice do the above in x and y directions separately

$$x_{cm} = \frac{m_1 x_1 + m_2 x_{2+ \dots}}{\sum m_i} \qquad y_{cm} = \frac{m_1 y_1 + m_2 y_{2+ \dots}}{\sum m_i}$$

Shown is a yummy doughnut. Where would you expect the center of mass of this breakfast of champions to be located?

Center of Mass

$$P_{tot} = M_{tot}V_{cm}$$

$$(P_{tot})/M_{tot} = V_{cm}$$

$$F_{\text{ext}}\Delta t = \Delta P_{\text{tot}} = M_{\text{tot}}\Delta V_{\text{cm}}$$

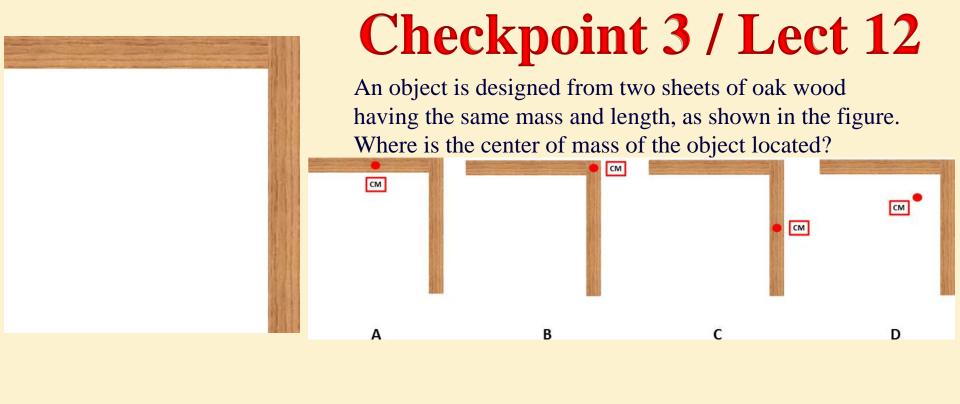
So if $F_{ext} = 0$ then V_{cm} is constant

Also: $F_{ext} = M_{tot} a_{cm}$

Center of Mass of a system behaves in a SIMPLE way

- moves like a point particle!
- velocity of CM is unaffected by collision if $F_{ext} = 0$

(pork chop demo)



Recall from a previous commentary (Lec 5):

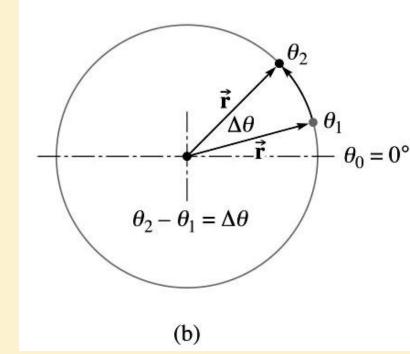
One of you said: This stuff... has the potential to be cool. I responded: I agree. You can even make money with it—more later

Making money with physics (aka: Making money at bars)

Lesson #1: The center of mass of humans

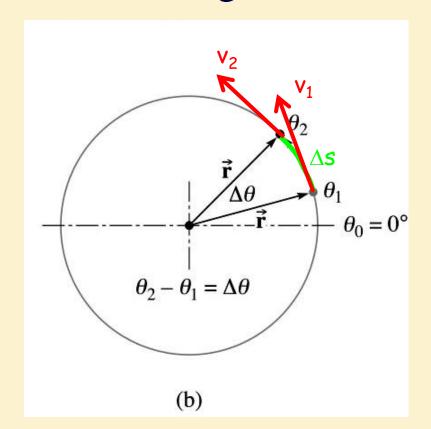
Circular Motion

- Angular displacement $\Delta \theta = \theta_2 \theta_1$
 - → How far it has rotated
 - \rightarrow Units: radians ($2\pi = 1$ revolution)
- Angular velocity $\omega = \Delta\theta/\Delta t$
 - → How fast it is rotating
 - → Units: radians/second
- Frequency measures revolutions per second: $f=\omega/2\pi$
- Period =1/frequency $T = 1/f = 2\pi / \omega$
 - → Time to complete 1 revolution



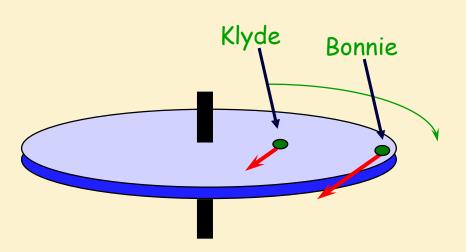
Circular to Linear

- Displacement $\Delta s = r \Delta \theta$ (θ in radians)
- Speed $|\mathbf{v}| = \Delta s/\Delta t = r \Delta \theta/\Delta t = r\omega$
- Direction of v: tangent to circle



Merry-Go-Round Clicker Q1

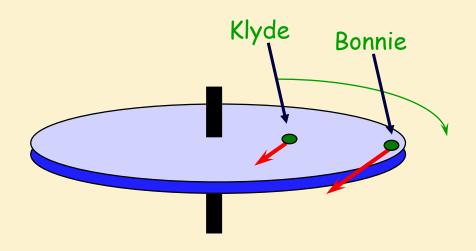
- Bonnie sits on the outer rim of a merry-go-round with radius 3 meters, and Klyde sits midway between the center and the rim. The merry-go-round makes one complete revolution every two seconds (demo).
 - → Klyde's speed is:
- (a) the same as Bonnie's
- (b) twice Bonnie's
- (c) half Bonnie's



Merry-Go-Round Clicker Q2

- Bonnie sits on the outer rim of a merry-go-round, and Klyde sits midway between the center and the rim. The merry-go-round makes one complete revolution every two seconds.
 - → Klyde's angular velocity is:

- (a) the same as Bonnie's
- (b) twice Bonnie's
- (c) half Bonnie's



Angular Acceleration

• Angular acceleration is the change in angular velocity ω divided by the change in time.

$$\overline{\alpha} \equiv \frac{\omega_f - \omega_0}{\Delta t}$$

• Example: If the speed of a roller coaster car is 15 m/s at the top of a 20 m loop, and 25 m/s at the bottom. What is the car's average angular acceleration if it takes 1.6 seconds to go from the top to the bottom?

$$\omega = \frac{V}{R}$$
 $\omega_f = \frac{25}{10} = 2.5$ $\omega_0 = \frac{15}{10} = 1.5$

$$\overline{\alpha} = \frac{2.5 - 1.5}{1.6} = 0.64 \text{ rad/s}^2$$

Linear and Angular Motion

	Linear	Angular
Displacement	X	θ
Velocity	V	ω
Acceleration	a	α
Inertia	m	I
KE	½ m v ²	$\frac{1}{2}I\omega^2$
Newton's 2 nd	F=ma	coming
Momentum	p = mv	coming

Today

Today

Angular kinematic equations (with comparison to 1-D kinematics)

Angular	Linear	0
α=constant	a=constant	$x \to \theta$
$\omega = \omega_{o} + \alpha t$	$v = v_o + at$	$v \rightarrow \omega$
$\theta = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2$	$x = x_0 + v_0 t + \frac{1}{2}at^2$	
		$a_t \rightarrow \alpha$
$\omega^2 = \omega_o^2 + 2\alpha \Delta\theta$	$v^2 = v_o^2 + 2a \Delta x$	

 $a_c = v^2 / R = R \omega^2$

 $x = R\theta$ $v = \omega R$ $a_t = \alpha R$

CD Player Example

- The CD in a disk player spins at about 20 radians/second. If it accelerates uniformly from rest with angular acceleration of 15 rad/s², how many revolutions does the disk make before it reaches its final angular speed of 20 radians/second?
- Plan: Use angular kinematics first to find θ in radians, and then convert to revolutions using 1 rev = 2π rad

$$\omega_0 = 0 \qquad \omega_f^2 = \omega_0^2 + 2\alpha\Delta\theta$$

$$\omega_f = 20 \text{ rad/s}$$

$$\alpha = 15 \text{ rad/s}^2 \qquad \frac{\omega_f^2 - \omega_0^2}{2\alpha} = \Delta\theta$$

$$\Delta\theta = ? \qquad \frac{20^2 - 0^2}{2 \times 15} = \Delta\theta$$

$$\Delta\theta = 13.3 \text{ radians}$$

1 Revolution = 2 π radians

 $\Delta\theta = 13.3 \text{ radians}$

= 2.12 revolutions

Axes and sign (i.e. what is positive and negative)

Whenever we talk about rotation, it is implied that there is a rotation "axis". We need a way of distinguishing + from – rotations.

This is typically called the "z" axis (we usually omit the z subscript for simplicity).

Counter-clockwise rotations: (increasing θ) will be positive

Clockwise rotations: (decreasing θ) will be negative.

[demo: bike wheel].

Energy Clicker Q and demo

When the bucket reaches the bottom, its potential energy has decreased by an amount mgh. Where has this energy gone?

- A) Kinetic Energy of bucket
- B) Kinetic Energy of flywheel
- C) Both 1 and 2.

Rotational Kinetic Energy

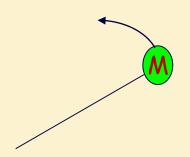
- Consider a mass M on the end of a string being spun around in a circle with radius r and angular frequency
 (demo)
 - \rightarrow Mass has speed $v = \omega r$
 - → Mass has kinetic energy

$$K = \frac{1}{2} M v^2 = \frac{1}{2} M (\omega r)^2$$

- $= \frac{1}{2} M \omega^2 r^2$
- $\Rightarrow = \frac{1}{2} (M r^2) \omega^2$
- \Rightarrow = $\frac{1}{2}$ I ω^2

I is "moment of inertia" and is the equivalent of mass for rotational motion (don't confuse I w/ impulse)

• Rotational Kinetic Energy is energy due to circular motion of object.



Rotational Inertia I (or moment of inertia)

• Tells how "hard" it is to get an object rotating. Just like mass tells you how "hard" it is to get an object moving.

```
→ K_{tran} = \frac{1}{2} \text{ m } \text{ v}^2 Linear Motion

→ K_{rot} = \frac{1}{2} \text{ I } \omega^2 Rotational Motion
```

- $I = \sum m_i r_i^2$ (units: kg m²; I plays same role in rotational motion that mass plays in linear motion)
- Note! rotational inertia (or *moment of inertia*) changes if the axis of rotation changes.

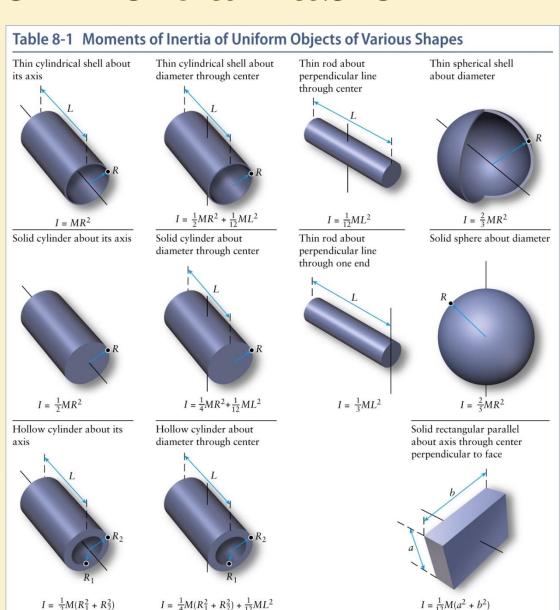
Moment of Inertia Table

Different shapes have different I.

For point masses, use $I = \sum m r^2$.

For extended objects, use this table.

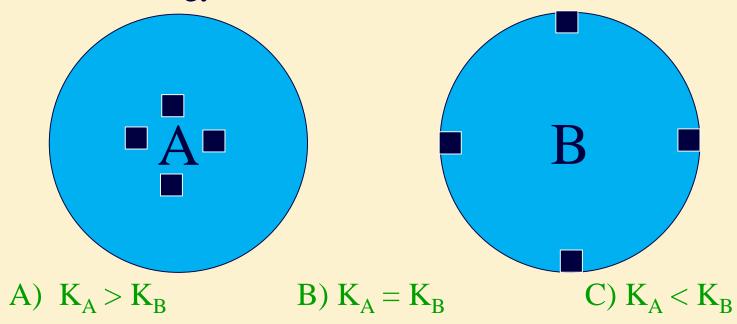
These are computed with calculus.



^{*}A disk is a cylinder whose length L is negligible. By setting L = 0, the above formulas for cylinders hold for disks.

Merry Go Round Clicker Q

Four kids (mass m) are riding on a (light) merry-go-round rotating with angular velocity $\omega=3$ rad/s. In case A the kids are near the center (r=1.5 m), in case B they are near the edge (r=3 m). Compare the kinetic energy of the kids on the two rides.



Inertia Rods Clicker Q

Two batons have equal mass and length. Which will be "easier" to spin?

- A) Mass on ends
- B) Same
- C) Mass in center

Main Ideas

- Center of Mass
- Rotational Kinematics is just like linear kinematics with parallel equations of motion
- Rotating objects have kinetic energy
 - \rightarrow KE = $\frac{1}{2}$ I ω^2
- Moment of Inertia $I = \Sigma \text{ mr}^2$
 - → Depends on Mass
 - → Depends on axis of rotation
- Energy is conserved but need to include rotational energy too: $K_{rot} = \frac{1}{2} I \omega^2$